
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2024 1

MRI Motion Correction Through Disentangled
CycleGAN Based on Multi-Mask K-Space

Subsampling
Gang Chen, Han Xie, Xinglong Rao, Xinjie Liu, Martins Otikovs, Lucio Frydman, Peng Sun, Zhi Zhang,

Feng Pan, Lian Yang, Xin Zhou, Maili Liu, Qingjia Bao, and Chaoyang Liu

Abstract— This work proposes a new retrospective mo-
tion correction method, termed DCGAN-MS, which em-
ploys disentangled CycleGAN based on multi-mask k-space
subsampling (DCGAN-MS) to address the image domain
translation challenge. The multi-mask k-space subsam-
pling operator is utilized to decrease the complexity of
motion artifacts by randomly discarding motion-affected k-
space lines. The network then disentangles the subsam-
pled, motion-corrupted images into content and artifact fea-
tures using specialized encoders, and generates motion-
corrected images by decoding the content features. By uti-
lizing multi-mask k-space subsampling, motion artifact fea-
tures become more sparse compared to the original image
domain, enhancing the efficiency of the DCGAN-MS net-
work. This method effectively corrects motion artifacts in
clinical gadoxetic acid-enhanced human liver MRI, human
brain MRI from fastMRI, and preclinical rodent brain MRI.
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Quantitative improvements are demonstrated with SSIM
values increasing from 0.75 to 0.86 for human liver MRI with
simulated motion artifacts, and from 0.72 to 0.82 for rodent
brain MRI with simulated motion artifacts. Correspondingly,
PSNR values increased from 26.09 to 31.09 and from 25.10
to 31.77. The method’s performance was further validated
on clinical and preclinical motion-corrupted MRI using the
Kernel Inception Distance (KID) and Fréchet Inception Dis-
tance (FID) metrics. Additionally, ablation experiments were
conducted to confirm the effectiveness of the multi-mask k-
space subsampling approach.

Index Terms— Gadoxetic acid-enhanced human liver
MRI, motion artifact, unpaired learning, multi-mask k-space
subsampling, CycleGAN.

I. INTRODUCTION

MAGNETIC resonance imaging (MRI) is a widely used
imaging modality for both clinical [1] and preclinical

[2] applications due to its ability to visualize both the anatomy
and function of tissues and organs as well as pathological
processes [3], [4]. However, since its inception, MRI has been
hampered by motion artifacts due to subject motion [5], [6].
An example is liver MRI with gadoxetic acid, a hepatocyte-
specific MR contrast agent [7], [8]. Previous studies [9]–[11]
have reported a high incidence (5%-18%) of severe image
quality degradation due to acute transient dyspnea or transient
severe motion during gadoxetic acid-enhanced MRI. In addi-
tion, in pediatric or stroke patients in clinical [12] or rodents
in preclinical studies [13], images are always degraded due to
subject motion between consecutive acquisitions. Therefore, it
is essential to develop an effective motion artifact correction
technique to improve the quality of motion-corrupted images.

Although various prospective and retrospective strategies
have been proposed to remove motion artifacts [6], [14]–[16],
non-rigid motion correction remains challenging, especially
for abdominal regions such as liver MRI [17]. Prospective
techniques perform a real-time update of the image acquisition
by utilizing either optical tracking of target markers [18]
or continuously reacquired images from dedicated navigator
scans [19]. However, these prospective solutions are subopti-
mal in liver MRI as nonrigid motion is difficult to track. On
the other hand, the retrospective motion correction methods
modify the k-space or image data after the acquisition [20].
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These methods can be classified into the primary information-
based methods that incorporate prior information and the data-
driven autofocusing methods that do not depend on any device
or navigator. The data-driven autofocusing motion correction
approaches are appealing, as they can be easily applied to
all scanners. Unfortunately, these approaches often result in a
poorly conditioned and non-convex optimization problem.

With the rapid development of deep learning, many re-
searchers have demonstrated great potential for MRI motion
correction [21], especially for dramatically reducing compu-
tation time [22] or improving the data-driven autofocusing
motion correction convergence [23]. Many methods are based
on end-to-end supervised learning networks. The classical
networks are trained by pairs of motion-corrupted and motion-
free images by comparing the network’s prediction with the
ground truth motion-free images, using a voxel intensity-
based cost function, i.e., L1 or L2 loss. Within this frame-
work, Tamada et al. [24] proposed a deep learning-based
network based on multi-channel convolutional neural networks
(MARC) to remove the motion artifacts in DCE-MRI images
of the liver. A method [25] combining dense convolutional
neural networks and residual U-Net was proposed to detect
and correct motion artifacts in brain MRI. Yang et al. [26] pro-
posed a model-based synthetic data-driven learning (MOST-
DL) method that combines Bloch simulation and general
MRI models, which can significantly reduce ghosting and
motion artifacts in T2 images. Shi et al. [27] proposed an
affinity fusion-based framework for iteratively random motion
(AFFIRM), which uses affinity fusion to integrate features
between 2D slices and reconstructed 3D volumes to accurately
estimate motion in multi-slice fetal brain MRI.

In addition to the classical supervised networks, several
generative end-to-end adversarial network (GAN) [28] based
methods have also been proposed. These GAN-based methods
introduce a generator network that maps the motion-corrupted
image to a motion-free one, and a discriminator network
that aims to distinguish the predicted image from a ground
truth image. The GAN-based conjugate gradient SENSE (CG-
SENSE) reconstruction method [29] uses the CG-SENSE algo-
rithm to reconstruct images from multishot motion-corrupted
k-space data. These images are further processed by GAN
for motion artifact correction. Bao et al. [30] proposed a
motion correction method based on the conditional generative
adversarial network with minimum entropy (cGANME), and
demonstrated that the additional entropy loss can improve
the final MR image quality. Gao et al. [31] proposed a
hierarchical perception adversarial learning framework (HP-
ALF), which employs a hierarchical mechanism to provide
structural information of MRI images for adversarial learning
from global and regional perspectives.

The supervised motion correction methods always require
paired data to train the network. The acquisition of paired
data is often impractical and time-consuming. A common
approach to generating the paired data is through simulations.
However, the simulations cannot accurately and sufficiently
reflect all possible forms of real-world artifacts. To cope
with the lack of paired motion-free and corrupted data, many
unsupervised generative models that aim to correct motion

Fig. 1. Overview of the proposed DCGAN-MS. First, multi-mask k-
space subsampling is applied to reduce motion artifacts and create a
subsampled motion domain. Then, forward translation corrects motion-
corrupted images into motion-free images, while backward translation
regenerates motion-corrupted images from motion-free ones.

artifacts with only unpaired data have been proposed. Cy-
cleGAN [32] architecture consisting of two GANs is one of
the most important unsupervised networks. Two generators,
one corrupting a motion-free image and one correcting an
unpaired corrupted image, are trained to invert each other
(cycle transform). Typical CycleGAN-based motion correction
methods are Cycle-MedGAN [33] and Cycle-MedGAN V2.0
[34], which capitalize on the adversarial loss to capture high-
frequency texture information, and the perceptual loss to en-
hance the sharpness of the translated images. Recently, Liu et
al. [35] suggested a disentangled unsupervised cycle-consistent
adversarial network (DUNCAN), which demonstrated that
artifact-corrupted images can be disentangled into an anatom-
ical content component and an artifact component. Pan et
al. [36] proposed an unsupervised network (DR-CycleGAN)
that introduces a novel content consistency loss to eliminate
entanglement. In a different setting, Oh et al. [37] attempted
to correct motion-corrupted measurements by combining re-
peated randomly subsampled reconstructions. The motion ar-
tifacts were reduced in probability by random subsampling
to reject the k-space outliers, and then an optimal transport-
driven cycleGAN (OT-cycleGAN) was used to reconstruct the
subsampled images.

In this work, we introduce a new retrospective motion
correction method, DCGAN-MS (Disentangled CycleGAN
based on multi-mask k-space subsampling), designed to ad-
dress motion artifacts in MRI. First, we apply multi-mask k-
space subsampling to reduce these artifacts, leveraging prior
knowledge that motion-induced artifacts predominantly arise
from outliers in the k-space phase-encoding direction. This
multi-mask subsampling approach will generate a domain with
fewer motion artifacts, facilitating the correction process while
preserving image content information. Second, we design a
network based on a disentangled CycleGAN architecture to
address the lack of paired ground truth data for training. By re-
formulating motion correction as an image domain translation
task, the network reconstructs motion-free images from multi-
mask subsampled, motion-corrupted inputs. We evaluate the
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Fig. 2. The architecture of the proposed method (DCGAN-MS). The upper panel (a) illustrates the cross-domain translation process, which utilizes
disentangled CycleGAN based on multi-mask k-space subsampling to address motion correction. The lower panel (b) shows the within-domain
translation, implemented as a self-supervised constraint to enhance the training efficiency of the encoder and decoder. Key components include:
Ec (content feature encoder), Ea (artifact feature encoder), Gc (clean domain generator), Gm (motion domain generator acting as the decoder),
Dc (clean domain discriminator), and Dm (motion domain discriminator).

method’s performance using Kernel Inception Distance (KID)
[38] and Fréchet Inception Distance (FID) [39] metrics, which
measure the similarity between the distributions of corrected
and motion-free images. Experiments on both simulated and
in vivo preclinical/clinical MRI data demonstrate the effective-
ness of the proposed approach. Additionally, ablation studies
confirm the impact of the multi-mask subsampling method on
enhancing motion correction.

II. METHODS
A. The architecture of DCGAN-MS

The main idea of DCGAN-MS is illustrated in Fig. 1.
Given unpaired motion-corrupted images x (from the motion
domain) and motion-free images y (from the clean domain),
our goal is to translate these images into their corresponding
counterparts in the opposite domains. First, multi-mask k-
space subsampling is applied to reduce motion artifacts and
obtain a subsampled motion domain. Second, forward trans-
lation corrects motion-corrupted images into motion-free im-
ages, while backward translation regenerates motion-corrupted

images from motion-free ones. In the forward translation, the
motion-corrupted images x are encoded and disentangled into
content and artifact features, while the motion-free images y
are encoded into content features. The content features from
the motion-corrupted images x are then decoded to reconstruct
images in the clean domain. Conversely, the artifact features
of x are combined with the content features of the motion-
free images y to generate new motion-corrupted images in the
motion domain

The multi-mask k-space subsampling operator is a crucial
component in reducing the complexity of motion artifacts
in motion-corrupted images, allowing the network to more
effectively disentangle content and artifact features. By ran-
domly discarding motion-affected k-space lines, this operator
sparsifies the motion artifact features, making it easier for the
disentangled CycleGAN framework to isolate these artifacts.
As a result, the network can focus more efficiently on recon-
structing the underlying content, even in cases with severe
motion artifacts. This sparsification process, as demonstrated
in the ablation studies (discussed further below), leads to a

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2024.3523949

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on January 02,2025 at 02:03:02 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2024

significant improvement in the model’s performance. Fig. 2
provides a detailed visualization of the proposed DCGAN-
MS architecture. The method is designed around three core
elements: multi-mask subsampling, cross-domain translation,
and within-domain translation. These elements work synergis-
tically to address the challenge of motion correction in MRI.
Multi-mask k-space subsampling simplifies artifact complex-
ity; cross-domain translation enables the transformation be-
tween motion-corrupted and motion-free image domains; and
within-domain translation ensures reconstruction consistency.

1) Multi-mask subsampling: The transient motion of the
subject introduces phase errors in the k-space data along
the phase-encoding direction. In most cases, these motion-
corrupted k-space outliers can be assumed to be sparse, leading
to the following motion-corrupted k-space data: [40]:

kx(r, p) =

{
ky(r, p)e

−jΦ(p), p ∈ K
ky(r, p)

(1)

where j =
√
−1, kx(r, p) and ky(r, p) refer to the motion-

corrupted and motion-free k-space data, respectively. r and p
indicate the read-out and phase-encoding directions, respec-
tively. ϕ(p) is the displacement (in radian) phase caused by
motion along the phase-encoding direction. The variable κ
denotes the phase-encoding indices where the motion occurs.

Therefore, by applying a k-space random subsampling op-
erator to the motion-corrupted image x in the phase-encoding
direction, we can mitigate the impact of motion artifacts
by randomly discarding some motion-affected k-space lines.
However, subsampling will also introduce aliasing artifacts
while reducing motion-related artifacts. Therefore, the multi-
mask k-space subsampling will be utilized to reduce the effect
of aliasing. The particular process is as follows:

(1) Input the raw k-space or image data. If the input is image
data, the Fourier transform F needs to be applied for the input
motion-corrupted images x and the motion-free images y to
transform the image data into the k-space domain, resulting in
kx = F(x), ky = F(y).

(2) The k-space data kx and ky are subsampled using multi-
mask to obtain subsampled k-space data ksx = T ⊙ kx, k

s
y =

T ⊙ky , where ⊙ represents element-by-element multiplication,
and T is the multiple subsampling matrix composed of 0 and
1.

(3) The subsampled k-space data ksx and ksy are converted
back to image space data through an inverse Fourier transform
F−1 to obtain the multi-mask subsampled image xd =
F−1(ksx), y

d = F−1(ksy).
2) Cross-domain translation: Fig. 2(a) shows the archi-

tecture for cross-domain translation, which is designed to
obtain the reconstructed motion-corrected images. Firstly, the
subsampled motion-corrupted images xd are encoded and
disentangled to the content features Zx

c = Ec(x
d) and artifact

features Zx
a = Ea(x

d). The subsampled clean images yd are
encoded to the content features Zy

c = Ec(y
d). Finally, the

artifact features Zx
a from the motion-corrupted images and

the content features Zy
c from the clean images are decoded to

generate the new motion-corrupted image ỹ = Gm(Zy
c , Z

x
a ).

Similarly, the content features Zx
c from the corrupted images

are decoded to obtain the motion-corrected images x̃ =
Gc(Z

x
c ).

One key advantage of DCGAN-MS is its ability to train the
network without requiring a paired dataset. This is achieved
by performing cross-domain translation twice, resulting in a
cycle transformation of the input, as shown in Fig. 2(a). This
cycle transformation imposes a cycle consistency constraint,
ensuring that the learned mappings between domains remain
consistent. DCGAN-MS trains the generator and discriminator
adversarially. As illustrated in Fig. 2, the model includes two
encoders, Ec and Ea along with two generator-decoders, Gc

and Gm. The discriminator Dc is used to distinguish whether
the generated motion-corrected images x̃ = Gc(Z

x
c ) belong

to the motion-clean domain. And the discriminators Dm dis-
tinguish whether the generated motion-corrupted images ỹ =
Gm(Zy

c , Z
x
a ) belong to the motion domain. The generators aim

to produce realistic motion-corrected images to deceive the
discriminators, while the discriminators work to improve their
classification accuracy and avoid being fooled. The detailed
architectures of the encoders, generators, and discriminators
are presented in Fig. 3.

3) Within-domain translation: Fig. 2(b) shows the architec-
ture for within-domain translation. The goal of the within-
domain translation is to train the encoder and decoder more
effectively by imposing a self-reconstruction loss. Similar to
the cross-domain translation, the motion-corrupted images x
and motion-free images y are multi-mask k-space subsampled
along the phase-encoding direction to obtain the subsampled
images xd and yd. Then, the motion-corrupted images xd are
also disentangled into the content features Zx

c and artifact
features Zx

a . The clean images yd are encoded to the content
features Zy

c . However, unlike cross-domain translation, we
do not swap the content features. Thus, the reconstructed
motion-corrupted xrec = Gm(Zx

a , Z
x
c ) and motion-corrected

yrec = Gc(Z
y
c ) should be identical to x and y, respectively.

B. The loss function
The total loss function of our method contains four parts

(see Fig. 4): the adversarial loss Ladv , the cycle-consistency
loss Lcyc, the reconstruction-consistency loss Lrec, and the
content-consistency loss Lsum:

Ltotal = λadvLadv + λcycLcyc + λrecLrec + λconLcon (2)

where λadv , λcyc, λrec and λcon are the balance factors to
ensure similar contributions among all these losses.

1) Adversarial loss: The adversarial loss Ladv is a critical
component of GAN-based networks, measuring the discrep-
ancy between the distribution of real motion-free data and
the distribution of generated motion-corrected data. This loss
encourages the generator to produce realistic images that can
deceive the discriminator, while pushing the discriminator to
correctly classify input images as real or fake. The adversarial
loss functions like a minimax game between the generator and
discriminator, where the generator aims to minimize the loss,
and the discriminator attempts to maximize it.

In the proposed method, there are two types of adversarial
losses: LC

adv , which encourages the generation of more re-
alistic motion-corrected images. LM

adv , which encourages the
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Fig. 3. The detailed structure of the proposed model, including encoders Ec and Ea, generators Gc and Gm and the discriminator. (a) Two
kinds of encoders: the content feature encoder Ec and the artifact feature encoder Ea. (b) Two kinds of generators: the clean domain generator
Gc whose input is only content features, and the motion domain generator Gm whose input contains both content features and artifact features.
(c) The discriminators (Dc, Dm), which evaluate the quality and realism of the generated images.

Fig. 4. Description of loss functions in the proposed method.

generation of more realistic motion-corrupted images.

Ladv = LC
adv + LM

adv (3)

LC
adv = E[∥Dc(y)∥2] + E[∥Dc(x̃)− 1∥2],

LM
adv = E[∥Dm(x)∥2] + E[∥Dm(ỹ)− 1∥2]

(4)

x̃ = Gc

(
Ec(x

d)
)
, ỹ = Gm

(
Ec(y

d), Ea(x
d)
)

(5)

where x̃ are the generated motion-corrected images, ỹ are the
generated motion-corrupted images, ∥·∥2 is the L2 norm, and
E denotes the expectation operator.

2) Cycle-consistency loss: The cycle-consistency loss Lcyc

is a crucial component of DCGAN-MS, ensuring that the
generated images retain the content of the original images after
cross-domain translation. This loss operates on the principle
that if an image is translated from the motion domain to
the clean domain, and then back to the motion domain, the
result should closely resemble the original image. Similarly,
if an image is translated from the clean domain to the motion
domain, and then back to the clean domain, the original image
should be recovered. The cycle-consistency loss measures the
difference between the original and reconstructed images using
the L1 norm and works to minimize this difference. This
constraint helps maintain the content integrity of the input
images throughout the translation process.

Lcyc = LC
cyc + LM

cyc (6)

LC
cyc = E[∥y − ycyc∥1], LM

cyc = E[∥x− xcyc∥1] (7)

xcyc = Gm

(
Ec

(
Φ(x̃)

)
, Ea

(
Φ(ỹ)

))
,

ycyc = Gc (Ec(Φ(ỹ)))
(8)

where xcyc is the cycle reconstructed motion-corrupted im-
ages, ycyc is the cycle reconstructed motion-corrected images,
and ∥·∥1 is the L1 norm.

3) Within-domain reconstruction-consistency loss: Lrec is
used to ensure that the encoder and decoder can preserve
the content of the input images after encoding and decoding,
which measures the pixel-wise discrepancy between the input
image and its reconstructed version in the within-domain
translation. This loss is based on the idea that if we encode an
image from the motion/clean domain and then decode it back
to the corresponding domain, we should obtain an image that is
identical or very similar to the original image. Reconstruction
loss can effectively avoid the problem of losing information or
introducing noise during the encoding and decoding process.

Lrec = LC
rec + LM

rec (9)

LC
rec = E[∥y − yrec∥1], LM

rec = E[∥x− xrec∥1] (10)

xrec = Gm

(
Ec(x

d), Ea(x
d)
)
, yrec = Gc

(
Ec(y

d)
)

(11)

where xrec are the reconstructed motion-corrupted images, and
yrec are the reconstructed motion-corrected images.

4) Content consistency loss: Due to the lack of sufficient
supervised information for the translated images, relying only
on the constraints of the feature domain discriminator may
lead to ”hallucinations” in the generated images. As we
know, motion artifacts always occur in the phase-encoding
direction and have a negligible effect on the calculation of
the sum of pixel values in each column along the phase-
encoding direction compared to the original content of the
images [36]. With content consistency loss Lcon constraints for
the final motion-corrected images, we can effectively reduce
hallucinations.

Lcon = LC
con + LM

con (12)
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Fig. 5. The complete inference process of motion correction in DCGAN-
MS.

LC
con =

n∑
i

(∥∥∥∥ sumi(y)

maxi(y)
− sumi(ỹ)

maxi(ỹ)

∥∥∥∥
1

)
,

LM
con =

n∑
i

(∥∥∥∥ sumi(x)

maxi(x)
− sumi(x̃)

maxi(x̃)

∥∥∥∥
1

) (13)

where n is the number of the column along the phase-encoding
direction, sumi is the summation of the pixel value in the ith
column, and maxi is the maximum value of the pixel value
in the ith column.

C. The pipeline of training and inference
Training procedure (1) Subsampling of the input unpaired

images with different mask N times (N = 15 in this study).
(2) Disentangle the multi-mask subsampled images into

content and artifact features.
(3) With extracted content and artifact features, a cross-

domain operator is employed to obtain generated motion-
free or motion-corrupted images. Subsequently, the cross-
domain operator is executed once more to ascertain the cycle-
consistency loss. At the same time, a within-domain operator
is utilized to obtain within-domain reconstruction-consistency
loss.

(4) Train the network (DCGAN-MS) with hybrid loss.
Inference procedure (1) Subsampling of the input motion-

corrupted images x with different mask N times (N = 15 in
this study) to obtain xd (see Fig. 5).

(2) Disentangle the subsampled motion-corrupted images xd

to the content features Zx
c = Ec(x

d) with the trained network
Ec.

(3) The content features Zx
c are decoded using the trained

network Gc, and the final motion-corrected image xcor is
obtained through average aggregation processing.

III. EXPERIMENTS
A. Dataset

1) Clinical gadoxetic acid-enhanced human liver MRI: The
clinical dataset comprised gadoxetic acid-enhanced MRI scans
of the liver collected from Union Hospital, Huazhong Uni-
versity of Science and Technology, after privacy-preserving
preprocessing. The study was approved by the institutional
review board (IRB No. 2019-09-021), and written informed
consent was waived. All MR image data (in DICOM file
format) were exported from the institutional Vue PACS system
and underwent deidentification preprocessing. A total of 176
examinations were acquired on a commercial 1.5T MR scanner
(MAGNETOM Avanto, Siemens Healthineers, Germany), and
132 examinations were acquired on a 3T MR scanner (MAG-
NETOM Skyra, Siemens Healthineers, Germany). The study

Fig. 6. Five-point Likert scale based on artifact significance. Grade 1:
No artifacts; Grade 2: Mild artifacts; Grade 3: Moderate artifacts; Grade
4: Severe artifacts; Grade 5: Non-diagnostic.

followed standard scanning protocols, images were acquired
using the 3Dimensional Volumetric Interpolated Breath-hold
Examination (3D-VIBE) pulse sequence [42] with the follow-
ing scan parameters: FOV 380 mm × 380 mm, acquisition
matrix size 320 × 320, TE = 1.29 ms, TR = 4.5 ms, and
slice thickness = 3 mm. Two radiologists assessed the grades
of motion artifacts. For subjective evaluation, they rated the
motion artifacts of arterial phase MR images before and after
motion correction using a five-point Likert scale based on
the significance of the artifacts [9], [10] (refer to Fig. 6). Of
the 308 examinations containing artifacts, we utilized 50 with
grade 2 to 5 motion artifacts and 58 without artifacts as a
training dataset. The remaining 258 examinations with artifacts
were used as a testset.

2) Preclinical brain rodent MRI: We also evaluated our al-
gorithm in the preclinical study for rodent brain MRI. The
preclinical MRI experiments were performed on a Bruker
Biospec 7.0 T/20 cm MRI scanner. A 72-mm-diameter volume
coil was used for radio-frequency (RF) transmission and a
quadrature surface coil for signal detection. The body tem-
perature was kept at 37 °C with water circulation. Images
were acquired using the Rapid Acquisition with Relaxation
Enhancement (RARE) pulse sequence and the following scan
parameters: FOV 28 mm × 28 mm, acquisition matrix size
256 × 256, ETL = 8, TE = 20 ms, TR = 2500 ms, slice
thickness = 0.6 mm, number of slices = 30. A total of 20
rats were scanned. To obtain realistic motion-affected images,
we conducted in vivo experiments with rodents by gradually
reducing the isoflurane concentration to zero. We maintained
the respiratory rate around 120 bpm for acquiring the motion-
affected imaging data.

3) Motion Simulation for Quantitative Analysis: To evaluate
the performance of motion correction methods in terms of
SSIM and PSNR, we simulated motion artifacts on both pre-
clinical and clinical datasets. For the clinical human liver MRI,
58 motion-free subjects were selected as the ground truth.
Artifact simulation was performed by introducing phase errors
to the k-space data, following the methods in [24], [40]. For
the preclinical rodent brain MRI, motion simulation accounted
for both inter-shot motion (within the repetition time) and
intra-shot motion (within the echo train), as described in
[30]. Additionally, human brain T2-weighted MRI from the
FastMRI public dataset [43] was utilized to further validate the
generalizability of the proposed method. The fastMRI dataset
scanning parameters are: field of view (FOV) ranging from
220 mm × 220 mm to 240 mm × 240 mm, acquisition matrix
size of 320 × 320, echo time (TE) of 95-112 ms, and repetition
time (TR) of 3112-8400 ms.
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TABLE I
QUANTITATIVE EVALUATION OF MOTION CORRECTION RESULTS USING VARIOUS METHODS FOR CLINICAL, PRECLINICAL, AND PUBLIC DATASETS

WITH SIMULATED MOTION ARTIFACTS. (BEST PERFORMANCE IS INDICATED IN BOLD BLACK)

Method Human liver MRI Rodent brain MRI Human brain MRI
from fastMRI

SSIM PSNR SSIM PSNR SSIM PSNR
Motion-corrupted 0.75 ± 0.08 26.09 ± 5.03 0.72 ± 0.10 25.10 ± 3.43 0.79 ± 0.04 27.27 ± 1.97

MARC [24] 0.79 ± 0.05 29.73 ± 2.63 0.77 ± 0.07 30.12 ± 3.44 0.82 ± 0.04 29.28 ± 2.45
DUNCAN [35] 0.80 ± 0.05 27.68 ± 1.66 0.76 ± 0.08 28.45 ± 3.65 0.82 ± 0.05 28.19 ± 2.41
Bootstrap [40] 0.82 ± 0.06 28.93 ± 3.04 0.77 ± 0.08 28.67 ± 3.63 0.79 ± 0.03 28.26 ± 1.72

UDDN [41] 0.85 ± 0.05 28.77 ± 4.13 0.82 ± 0.07 31.09 ± 4.32 0.83 ± 0.05 27.95 ± 2.69
Ours 0.86 ± 0.04 31.09 ± 1.89 0.82 ± 0.06 31.77 ± 4.49 0.84 ± 0.04 28.63 ± 1.60

Fig. 7. Quantitative and qualitative comparison of motion correction results using various methods for human liver MRI with simulated motion
artifacts. The top-to-bottom rows show motion correction for varying degrees of motion artifacts. Our method is compared with four state-of-the-art
techniques: MARC [24], DUNCAN [35], Bootstrap [40] and UDDN [41] . The PSNR and SSIM values for each image are displayed in the corners.

B. Implementation of methods
The experiments were conducted using a system equipped

with an NVIDIA Geforce RTX 3090 with 24GB of GPU
memory and an Intel Xeon Gold 6230 CPU at 2.10 GHz.
For the training process, we implemented our network on the
PyTorch platform and utilized Adam [44] for optimization.
The learning rate was initially set to 0.0001 with exponential
decay over 10K iterations. To save memory and speed up
training, we randomly cropped the original images to obtain
128 × 128 pixel images prior to training.

For comparison, we also implemented three state-of-the-
art deep learning-based methods: one supervised method
(MARC) [24] and three unsupervised methods (DUNCAN
[35], Bootstrap [40] and UDDN [41]). MARC is an end-to-
end supervised deep learning approach for motion correction.
We trained the MARC network with the simulated data and
tested it with both the simulated and real in vivo data.

Evaluating the quality of the model can be challenging when
motion correction attempts to generate high-dimensional data
(motion-corrected data) with complex structures, especially for
real in vivo images. The Kernel Inception Distance (KID) [38]

and Fréchet Inception Distance (FID) [39] are common metrics
used to compare the feature distributions of the generated
and real images to assess how well the generative model
preserves the diversity and quality of the original domain.
In this study, we used the Kernel Inception Distance (KID)
and Fréchet Inception Distance (FID) in conjunction with
commonly used evaluation metrics such as the Peak Signal
to Noise Ratio (PSNR) and the Structural Similarity Index
(SSIM) to assess the quality of the generated motion-corrected
images. The KID and FID scores decrease as the distribution
of the generated images approaches that of the real motion-
free images. We used t-distributed stochastic neighborhood
embedding (t-SNE) [45] to reduce the dimensionality of
the feature vectors and assess the dissimilarity between the
distribution of the generated motion-corrected data and the
real motion-free data. The source code and example data are
available on https://github.com/baoqingjia/DCGAN-MS.

IV. EXPERIMENTAL RESULTS
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Fig. 8. Quantitative and qualitative comparison of motion correction results using various methods for human brain MRI from fastMRI with simulated
motion artifacts.

Fig. 9. SSIM histograms of motion correction results using various
methods for human liver MRI with simulated motion artifacts.

A. Clinical MRI Data
1) Simulated motion artifacts: Fig. 7 provides both a quanti-

tative and qualitative comparison of motion correction results
for simulated motion artifacts in gadoxetic acid-enhanced
MRI. Each image includes a zoomed-in region to highlight
details, with the corresponding PSNR and SSIM values shown
in the upper left corner. The MARC method [24] shows a
reduction in motion artifacts; however, it often introduces
noticeable blurring, leading to a loss of fine image details.
Both the DUNCAN [35] and Bootstrap [40] methods manage
to avoid significant blurring, but their overall effectiveness
in correcting motion artifacts remains limited. In contrast,
our proposed method successfully eliminates motion artifacts

while preserving the finer structural details of the image.
This is especially evident in the zoomed regions, where our
method’s results appear much closer to the ground truth
compared to other methods. To further validate the general-
izability of our method, we compared the motion correction
results of various methods applied to human brain MRI from
fastMRI, utilizing simulated motion artifacts for evaluation. As
illustrated in Fig. 8, each image is accompanied by a difference
map that highlights the discrepancies between the corrected
images and the ground truth. These difference maps provide
a visual representation of the effectiveness of each method in
reducing motion artifacts and preserving the integrity of the
original images. By analyzing these results, we can assess how
well our approach performs compared to other state-of-the-
art methods, reinforcing its robustness and versatility across
different datasets and imaging conditions.

In addition to visual improvements, our method significantly
boosts quantitative performance. As shown in Table I, both
PSNR and SSIM values are markedly enhanced after applying
our motion correction technique, indicating more accurate and
clearer reconstructions. To further validate these findings, Fig.
9 presents SSIM histograms comparing different methods. The
SSIM values for the motion-corrupted images primarily fall
between 0.5 and 0.9, highlighting the degradation caused by
motion. However, after applying our method, most images
achieve SSIM values above 0.8, significantly outperforming
other state-of-the-art techniques. This demonstrates not only
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Fig. 10. Motion correction results of clinical gadoxetic acid-enhanced human liver MRI using various methods.

TABLE II
RADIOGRAPHIC ASSESSMENT OF MOTION CORRECTION RESULTS

USING VARIOUS METHODS FOR CLINICAL GADOXETIC ACID-ENHANCED

HUMAN LIVER MRI.

Method Artifact Cohen’s kappa Blurring Cohen’s kappa
Motion-corrupted 2.9 ± 1.3 0.92 1.2 ± 0.4 1.0

MARC [24] 1.6 ± 0.5 0.89 2.5 ± 0.5 0.71
DUNCAN [35] 2.3 ± 0.7 0.86 1.3 ± 0.3 0.80
Bootstrap [40] 2.1 ± 0.8 0.84 1.2 ± 0.4 0.88

UDDN [41] 2.0 ± 0.5 0.90 1.1 ± 0.5 1.0
Ours 1.8 ± 0.6 0.89 1.1 ± 0.4 1.0

TABLE III
RADIOGRAPHIC ASSESSMENT OF MOTION CORRECTION RESULTS

USING VARIOUS METHODS FOR HUMAN LIVER MRI WITH SIMULATED

MOTION ARTIFACTS.

Method Artifact Cohen’s kappa Blurring Cohen’s kappa
Motion-corrupted 3.4 ± 1.2 0.84 1.5 ± 0.4 1.0

MARC [24] 1.4 ± 0.4 0.84 2.2 ± 0.6 0.84
DUNCAN [35] 1.9 ± 0.7 0.86 1.5 ± 0.3 0.77
Bootstrap [40] 1.7 ± 0.5 0.89 1.3 ± 0.4 1.0

UDDN [41] 1.5 ± 0.6 0.84 1.5 ± 0.4 0.90
Ours 1.5 ± 0.7 0.83 1.3 ± 0.3 1.0

the robustness of our approach in addressing motion artifacts
but also its ability to maintain and even enhance image quality
across a wide range of conditions.

2) Real motion artifacts: Fig. 10 presents the motion cor-
rection results for clinical gadoxetic acid-enhanced MRI im-
ages that exhibit real in vivo motion artifacts. Our proposed

method demonstrates superior performance compared to other
techniques in motion correction, effectively avoiding blurring
and preserving fine details in the images. This preservation
of detail is crucial for accurate diagnosis and interpretation,
especially in complex abdominal imaging scenarios.

To gain a more comprehensive understanding of the clinical
relevance of these results, we invited two experienced radi-
ologists to conduct a thorough radiologic assessment of the
corrected images. The two physicians, one with 25 years of
experience (Lian Yang) and the other with 13 years (Feng Pan)
in abdominal radiology, independently evaluated the images
for the presence of artifacts and blurring. The findings from
their evaluations are summarized in Table II, which details
their assessments regarding the effectiveness of the different
methods. Image quality was evaluated using a standardized 5-
point visual scoring system, where: 1 = excellent image quality
with no visible artifacts; 2 = mild artifacts but satisfactory
diagnostic confidence; 3 = moderate artifacts with limited
diagnostic confidence; 4 = poor image quality with severe
artifacts; and 5 = non-diagnostic image quality due to pro-
nounced artifacts. Additionally, image blurring was assessed
using a 4-point scoring system: 1 = no blurring; 2 = mild
blurring; 3 = moderate blurring; and 4 = severe blurring. To
ensure the reliability of the evaluations, the consistency of the
radiologists’ scores was further analyzed using Cohen’s kappa
measure.

Our results demonstrate the efficacy of the proposed method
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in mitigating motion artifacts, achieving a significantly lower
mean motion artifact score of 1.8 ± 0.6 (indicating mild
artifacts with satisfactory diagnostic confidence) compared to
2.9 ± 1.3 for motion-corrupted images (indicating moderate ar-
tifacts with limited diagnostic confidence). Notably, the model
does not introduce additional image blurring. Furthermore,
radiographic assessments of simulated motion correction (see
Table III) validate the improved visual quality of the images.
Expert evaluations confirm that our approach significantly
enhances diagnostic confidence and accuracy. This validation
by experienced radiologists highlights the clinical applicability
of our method, underscoring its potential to improve diagnostic
outcomes and patient care in real-world scenarios.

B. Preclinical MRI Data

We also applied the method to the preclinical simulated
and in vivo data. Fig. 11 shows the comparison for simulated
motion-corrupted rodent brain MRI images. The motion arti-
fact correction performance of our method is better than the
other methods in terms of PSNR and SSIM (see Table I). Fig.
12 shows the motion-correction results for preclinical rodent
brain MRI with real motion artifact using various methods.
These results illustrate that our method can significantly reduce
motion artifacts and outperform the other methods.

C. The KID and FID Results

As mentioned above, the evaluation of the performance of
the motion correction method for in vivo data is not trivial. In
this study, we further analyzed the Kernel Inception Distance
(KID) and Fréchet Inception Distance (FID) for different
methods. As shown in Table IV, our method has significantly
lower KID and FID scores than the other methods. This
indicates that the image distribution of corrected images using
our method is closer to the distribution of images without
motion artifacts.

We also use t-distributed stochastic neighbor embedding (t-
SNE) plots to visually analyze the performance of different
motion correction methods for the clinical gadoxetic acid-
enhanced human liver MRI with real motion artifact. The
corrected and clean images are processed by the pre-trained
Inception v3 network [46] to obtain high-level image features
(1 × 2048), and Principal Component Analysis (PCA) [47]
and t-SNE further reduce the feature dimension to 1 × 2. By
plotting the dimensionality reduction features (1 × 2) of the
two images, we can compare the distributions of the corrected
and clean images (see Fig. 13). The MARC-corrected images
have a distribution that is significantly different from that
of the clean images, with a noticeable distance between
them. The DUNCAN-corrected images have a distribution that
exhibits a clear boundary from that of the clean images. The
images corrected by Bootstrap and our method are intertwined
with the distribution of the clean images and do not show clear
boundaries. However, the images corrected by our method are
more tightly intertwined, indicating that they are closer to the
clean images.

TABLE IV
COMPARISON OF KID AND FID SCORES FOR DIFFERENT MOTION

CORRECTION METHODS APPLIED TO BOTH CLINICAL AND PRECLINICAL

MRI DATA.

Method
Clinical gadoxetic acid-

enhanced human liver MRI
Preclinical rodent

brain MRI
KID FID KID FID

DUNCAN [35] 0.080 22.76 0.053 87.82
Bootstrap [40] 0.080 22.74 0.019 49.00

UDDN [41] 0.073 20.89 0.049 84.80
Ours 0.066 18.69 0.015 44.91

V. DISCUSSION

This work presents a motion correction method that uti-
lizes a disentangled CycleGAN framework based on multi-
mask subsampled motion-corrupted images. The efficacy of
this method was evaluated using quantitative metrics SSIM
and PSNR on three datasets with simulated motion artifacts:
human liver MRI, human brain MRI from fastMRI, and rodent
brain MRI. Furthermore, the efficacy of this method was val-
idated on clinical gadoxetic acid-enhanced human liver MRI
and preclinical rodent brain MRI, with real motion artifacts.
For the preclinical dataset, the analysis was conducted using
raw k-space data, while for clinical studies, we relied on
magnitude image data. This distinction arises from the fact
that raw k-space data is rarely archived in clinical settings
due to storage constraints. Notably, our proposed method
effectively addresses motion artifacts in both raw k-space data
and reconstructed magnitude images. It is well established that
parallel imaging and compressed sensing are widely adopted
techniques in clinical MRI, and applying our method to real
raw k-space data in conjunction with these techniques presents
an exciting opportunity for future research. We hypothesize
that integrating our method with parallel imaging and com-
pressed sensing will yield even better image quality. Firstly,
accelerated and parallel imaging techniques can significantly
reduce acquisition times, thereby minimizing the likelihood
of motion events occurring during scanning. Secondly, our
retrospective motion correction method is designed to manage
residual motion artifacts that may still be present in the
images. This combination could enhance the overall efficacy of
motion correction, leading to improved diagnostic capabilities
in clinical practice.

In contrast to supervised motion correction methods, unsu-
pervised approaches do not require large amounts of paired
data for training, making them more adaptable in real-world
scenarios where such data is often scarce. Additionally, un-
supervised networks [48], [49] are generally more robust
to distribution shifts and better equipped to handle out-of-
distribution samples compared to their supervised counter-
parts. While methods like MARC can achieve higher quan-
titative metrics such as PSNR and SSIM by minimizing the
L1 loss between clean and motion-corrupted images, they
tend to underperform on real in vivo images with complex
motion artifacts. For instance, as shown in Fig. 7, the su-
pervised MARC method [24] often generates blurry images.
Generative AI-based methods are better suited for preserving
fine structural details in images than end-to-end deep learning
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Fig. 11. Quantitative and qualitative comparison of motion correction results using various methods for rodent brain MRI with simulated motion
artifacts.

Fig. 12. Motion correction results of preclinical rodent brain MRI using
various methods.

motion correction techniques. Motivated by these advantages,
we developed a novel motion correction method leveraging
CycleGAN, one of the most advanced frameworks in genera-
tive AI. To further enhance image quality, we also introduced
a multi-scale discriminator, which evaluates the differences
between motion-free and motion-corrected images at various
scales. This multi-scale approach ensures that finer details are
preserved while reducing motion artifacts, ultimately leading
to sharper, more realistic images across a range of scales.

The occurrence of hallucinations remains a persistent chal-
lenge in generative AI-based motion correction for MRI. Hal-
lucinations occur when the generative model introduces unre-

alistic or spurious structures into the image, which can mislead
clinical interpretation. To tackle this issue, some researchers
have incorporated physics-based motion models into the MRI
reconstruction process [50]–[53]. For example, Hossbach et
al. [51] proposed a novel approach to rigid-body motion
correction that combines traditional model-driven techniques
with deep learning algorithms. Similarly, Levac et al. [54] de-
veloped a diffusion model-based method for accelerated MRI
motion correction, which jointly estimates both the motion-
free image and rigid motion parameters from subsampled,
motion-corrupted 2D k-space data. However, these methods
are mostly tailored to rigid motion, where the physical model
is relatively simple compared to the complexities involved
in non-rigid motion, such as that seen in liver MRI. The
goal of our study is to develop a motion correction method
that is effective in handling non-rigid motion, particularly for
clinical gadoxetic acid-enhanced human liver MRI. To achieve
this, we have devised a generative AI-based motion correction
framework utilizing image-to-image translation. A key focus
of this approach is minimizing hallucinations by leveraging
three carefully crafted loss functions.

The first of these is the cycle-consistency loss Lcyc, which
ensures that the content of the input image is maintained
after it undergoes cross-domain translation between motion-
corrupted and motion-free domains. This prevents the net-
work from losing crucial anatomical information during the
generative process. The second loss function, within-domain
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Fig. 13. t-SNE plots between motion correction results of various
methods and clinical gadoxetic acid-enhanced human liver MRI. (a)
DUNCAN [35], (b) Bootstrap [40], (c) UDDN [41] , and (d) Ours method.

reconstruction consistency loss Lrec, ensures that the network
can faithfully reconstruct the original content of the input
image after encoding and decoding within the same domain.
This is critical for preserving image fidelity throughout the
correction process. The third loss function, content consistency
loss Lcon, is designed specifically to address the challenge of
hallucinations. Since motion artifacts typically manifest in the
phase-encoding direction of MRI, they have little impact on
the overall sum of pixel values in each column along that
direction. By incorporating this knowledge, Lcon provides a
form of supervised information that guides the network to
retain the original content of the image while removing motion
artifacts. This not only helps mitigate hallucinations but also
ensures that the corrected images remain faithful to the true
underlying anatomical structures. However, we acknowledge
that the proposed method is not entirely free from hallucination
artifacts. To assess this, two experienced radiologists analyzed
a total of 300 real in vivo motion-corrupted images (motion
grades 4–5). Among these, hallucinations were observed in
4 images when using the proposed method, compared to 16
images when content consistency loss was not employed. This
indicates that while our approach reduces the occurrence of
hallucinations, there is still room for further improvement.

We also compared our method to two state-of-the-art un-
supervised deep-learning-based methods, namely, DUNCAN
[35] and Bootstrap [40]. DUNCAN is conceptually similar to
the CycleGAN architecture, which consists of two generators,
to overcome the need for paired datasets. Moreover, DUN-
CAN also disentangles images by separating image content
features from motion artifact features. Although DUNCAN
significantly improves upon MARC and CycleGAN in terms of
motion correction, its performance can degrade when dealing
with highly complex or severe motion artifacts, as it primarily
focuses on generating fully sampled motion-free images from
fully sampled motion-corrupted images.

The Bootstrap method approaches motion correction from
a probabilistic subsampling perspective. It trains only one
generator to remove subsampling artifacts rather than directly
addressing motion artifacts. The method does not learn to

Fig. 14. Histograms of motion artifact magnitude for 1,000 clinical
gadoxetic acid-enhanced human liver MRI, measured by the L2 norm
of the disentangled artifact module Ea. From left to right: single-mask
subsampling, multi-mask subsampling, and without subsampling.

Fig. 15. t-SNE plots for visualizing three scenarios: (a) motion-
corrupted versus motion-free images, (b) single-mask subsampling of
motion-corrupted and motion-free images, and (c) multi-mask subsam-
pling of motion-corrupted and motion-free images.

differentiate between motion-free and motion-corrupted im-
ages but instead generates motion-free images by ”cheating”
the discriminator—replacing randomly dropped k-space lines
with denoised or reconstructed lines based on the assump-
tion that these missing lines should resemble uncorrupted
data. However, when the subsampled motion-corrupted images
significantly differ from their motion-free counterparts, the
Bootstrap method may struggle to produce satisfactory results.

In contrast, the primary focus of our method is motion
correction through disentangled CycleGAN architecture, aug-
mented with multi-mask subsampling of motion-corrupted
k-space data. The subsampling operator randomly discards
motion-affected k-space lines, mitigating the impact of mo-
tion artifacts [55]–[57] and aiding in the disentanglement
of image content from motion artifact features. This op-
erator helps to sparsify motion artifact features, improving
the efficiency of the CycleGAN model, particularly when
motion artifacts are severe. However, if the subsampling mask
primarily retains most of the motion-corrupted k-space data,
the motion correction results may not be optimal. While
subsampling can introduce aliasing artifacts, our multi-mask
subsampling strategy helps minimize aliasing effects, much
like the Bootstrap method. However, our method diverges
from Bootstrap in both reconstruction and correction. Unlike
Bootstrap, which only uses motion-free images for training,
our method leverages both motion-free and motion-corrupted
datasets. This enables our model to better handle complex and
severe motion artifacts, resulting in more accurate and effective
motion correction, especially in challenging cases.

In the following section, we evaluate the role of multi-
mask k-space subsampling from two critical perspectives:
simplifying the motion artifacts and preserving the consistency
of image content information.
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Fig. 16. The histogram and Blad-Altman plots of within-domain
reconstruction-consistency loss between the motion-free images y and
the reconstructed images yrec. The up row shows the comparison
of the histogram. From left to right: single-mask subsampling, multi-
mask subsampling, and without subsampling. The second row shows
the Blad-Altman plots.

TABLE V
QUANTITATIVE EVALUATION OF MOTION CORRECTION RESULTS USING

DIFFERENT SUBSAMPLING MASK NUMBERS N FOR HUMAN LIVER MRI
WITH SIMULATED MOTION ARTIFACTS.

numbers of subsampled
masks (N ) SSIM PSNR

Input 0.75 ± 0.08 26.09 ± 5.03
N = 1 0.84 ± 0.05 29.54 ± 2.21
N = 5 0.84 ± 0.05 29.70 ± 2.33
N = 10 0.84 ± 0.04 29.72 ± 2.15
N = 15 0.86 ± 0.04 31.09 ± 1.89
N = 20 0.85 ± 0.05 29.74 ± 2.09

A. Subsampling to simplify the motion artifacts

We quantify the motion artifacts by computing the L2
norm of the disentangled artifact modules Ea. Fig. 14 shows
the histograms of artifact amplitudes for 1000 clinical ga-
doxetic acid-enhanced MRI images (including with single-
mask subsampling, multi-mask subsampling, and without
subsampling. Without subsampling, artifact amplitudes are
distributed around 1.4-3.3. After subsampling, the artifact
feature amplitudes are reduced to 0.4-1.8. The results suggest
that subsampling can significantly reduce the motion artifact
complexity, which may facilitate the network disentanglement
artifact features. Moreover, we can observe that the artifacts
with multi-mask subsampling are very similar to the single-
mask subsampling.

Similarly, we used t-SNE to visualize the following three
scenarios: motion-corrupted and motion-free images, motion-
corrupted and motion-free images with single-mask subsam-
pling, and motion-corrupted and motion-free images with
multi-mask subsampling. As shown in the Fig. 15, the distri-
butions of motion-corrupted and motion-free images become
increasingly similar after subsampling. This suggests that
subsampling effectively reduces the complexity of motion
artifacts, helping to align the feature distribution of motion-
corrupted images with that of motion-free images.

TABLE VI
QUANTITATIVE EVALUATION OF MOTION CORRECTION RESULTS USING

DIFFERENT ACCELERATION FACTORS R FOR HUMAN LIVER MRI WITH

SIMULATED MOTION ARTIFACTS.

Factor R SSIM PSNR
Input 0.75 ± 0.08 26.09 ± 5.03
R = 1 0.82 ± 0.05 29.04 ± 2.75
R = 2 0.83 ± 0.05 29.33 ± 2.03
R = 3 0.86 ± 0.04 31.09 ± 1.89
R = 4 0.84 ± 0.05 29.41 ± 2.51

B. Multi-mask subsampling that preserves the
consistency of image content information

The proposed method with subsampling aims to reduce
artifacts effectively without losing the content information. To
evaluate the impact of the subsampling operator on the content
information, we calculate the within-domain reconstruction-
consistency loss Lrec between the reconstructed images yrec

and the input motion-free images y (see details in the loss
function), and compare the loss with or without subsampling.
The histograms and Bland-Altman plot in Fig. 16 indicate
that the reconstruction-consistency loss tends to increase after
applying single-mask subsampling (with an average recon-
struction loss increase of 0.28) compared to the case without
subsampling. This observation implies that the subsampling
operator leads to content information loss in motion-corrupted
images. To address this issue, a concept similar to bootstrap
is introduced, involving the use of multi-mask k-space sub-
sampling to recover content information. The reconstruction-
consistency loss histograms exhibit remarkable similarity be-
tween multi-mask subsampling and without subsampling con-
ditions, with an average reconstruction-consistency loss differ-
ence of only 0.02.

We experimented with the effect of different numbers of
subsampled masks (denoted as N ) on the motion correction
results. Table V shows that both PSNR and SSIM improve as
N increases. The performance stabilizes when N reaches 15.
Therefore, we choose N = 15 as a compromise between per-
formance improvement and computational overhead. Through-
out these ablation experiments, we keep the acceleration factor
R fixed at 3 to streamline the adjustment of the hyperparameter
N . Similarly, to validate the impact of different subsampling
rates, we also examine different acceleration factors, denoted
as R. Fig. 17 illustrates an example of correction results with
different motion artifacts and different acceleration factors R.
Table VI provides a quantitative comparison across different
acceleration factors. Based on these results, motion artifacts
are most effectively removed when an acceleration factor
R = 3 is used. Throughout these ablation experiments, we
kept the number of sub-sampled masks at N = 15 to facilitate
the adjustment of the acceleration factor hyperparameter.

VI. CONCLUSION
We propose a retrospective motion correction method that

used disentangled CycleGAN based on multi-mask k-space
subsampling (DCGAN-MS). The main idea is to convert
motion correction to the image domain transfer problem,
which can be solved by disentangled CycleGAN. Moreover,
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Fig. 17. Quantitative and qualitative comparison of motion correction using different acceleration factors R for human liver MRI with simulated
motion artifacts. From left to right: motion corrupted, without subsampling (R = 1), with subsampling factor R = 2, R = 3, R = 4, and the
ground truth (GT).

the mutli-mask subsampling strategy is introduced to reduce
features of the motion artifacts and simplify the domain
transfer problem. The network can disentangle the motion-
corrupted images into the content and artifact features by
corresponding trained encoders and obtain the corresponding
motion-free images by applying the decoder with the content
domain. DCGAN-MS can correct the motion artifact for clin-
ical gadoxetic acid-enhanced human liver MRI and preclinical
rodent brain MRI without paired datasets. It also outperforms
other unsupervised methods in quantitative metrics, including
SSIM and PSNR for datasets with simulated motion artifacts,
and KID, FID for the real in vivo datasets.
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