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Background: Ultra-high field 7T MRI can provide excellent tissue contrast and anatomical details, but is often cost prohibitive,
and is not widely accessible in clinical practice.
Purpose: To generate synthetic 7T images from widely acquired 3T images with deep learning and to evaluate the feasibil-
ity of this approach for brain imaging.
Study Type: Prospective.
Population: 33 healthy volunteers and 89 patients with brain diseases, divided into training, and evaluation datasets in the
ratio 4:1.
Sequence and Field Strength: T1-weighted nonenhanced or contrast-enhanced magnetization-prepared rapid acquisition
gradient-echo sequence at both 3T and 7T.
Assessment: A generative adversarial network (SynGAN) was developed to produce synthetic 7T images from 3T images
as input. SynGAN training and evaluation were performed separately for nonenhanced and contrast-enhanced paired
acquisitions. Qualitative image quality of acquired 3T and 7T images and of synthesized 7T images was evaluated by three
radiologists in terms of overall image quality, artifacts, sharpness, contrast, and visualization of vessel using 5-point Likert
scales.
Statistical Tests: Wilcoxon signed rank tests to compare synthetic 7T images with acquired 7T and 3T images and
intraclass correlation coefficients to evaluate interobserver variability. P < 0.05 was considered significant.
Results: Of the 122 paired 3T and 7T MRI scans, 66 were acquired without contrast agent and 56 with contrast agent. The
average time to generate synthetic images was �11.4 msec per slice (2.95 sec per participant). The synthetic 7T images
achieved significantly improved tissue contrast and sharpness in comparison to 3T images in both nonenhanced and
contrast-enhanced subgroups. Meanwhile, there was no significant difference between acquired 7T and synthetic 7T
images in terms of all the evaluation criteria for both nonenhanced and contrast-enhanced subgroups (P ≥ 0.180).
Data Conclusion: The deep learning model has potential to generate synthetic 7T images with similar image quality to
acquired 7T images.
Level of Evidence: 2
Technical Efficacy: Stage 1
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Ultra-high field 7T MRI is an emerging technique, which
provides images with higher resolution and signal-

to-noise ratio in comparison with routine 3T and 1.5T
MRI.1,2 7T MRI has the potential to improve the diagno-
sis and monitoring of diseases such as multiple sclerosis,
cerebrovascular disease, brain tumors, and aging-related
brain changes.3 In addition, 7T MRI has been shown to
allow better delineation of brain tissues and small anatom-
ical substructures, such as hippocampus.4–6 However, 7T
MRI scanners are much more expensive and infrequently
available in the clinic. Currently, there are fewer than
100 7T MRI scanners compared with more than 20,000
3T MRI scanners in the world.5 Therefore, synthesizing
7T MR images from widely acquired 3T images may be
desirable for both clinical and research applications.

Recent studies have shown that 7T images can be syn-
thesized from 3T images using learning-based methods,
such as linear regression6 and random forest.4 However,
the effectiveness of these methods is typically limited by
the quality of hand-crafted features.5 In recent years, deep
learning, particularly the generative adversarial network,
has been successfully used in various medical image synthe-
sis problems.7,8 Nie et al proposed a deep convolutional
adversarial network incorporating gradient difference loss
to learn the nonlinear 3T-to-7T mapping.9 Qu et al intro-
duced a deep learning network (i.e., WATNet) that lever-
ages the wavelet domain as a prior to synthesizing 7T
images with better tissue contrast and greater detail.5

Learning 3T-to-7T mappings generally requires large
amounts of paired and well pixel-wise aligned 3T and 7T
data.10 However, it is difficult to acquire abundant paired
3T and 7T data because 7T MRI scanners are not widely
accessible.11 Previous studies have been based on paired 3T
and 7T MR scans from 15 healthy volunteers, and have
used semi-supervised adversarial learning11 or data aug-
mentation12 to learn reliable mappings from 3T scans to
7T scans. However, the feasibility of using the generated
synthetic 7T images for clinical brain imaging was not
evaluated.

T1-weighted magnetization-prepared rapid acquisition
gradient-echo (MPRAGE) benefits substantially from the use
of ultra-high field 7T MRI and provides excellent contrast
between gray and white matter.13 Moreover, contrast-
enhanced 7T MPRAGE allows better visualization of brain
tumor details and higher diagnostic confidence compared
with 3T MPRAGE.14

As a proof-of-concept study, the purpose of this study
was to develop a generative adversarial network (SynGAN)
model to synthesize high-quality 7T MPRAGE images from
nonenhanced and contrast-enhanced 3T MPRAGE images,
and to investigate the image quality of the synthetic 7T
images in clinical brain imaging.

Materials and Methods
Study Participants
This prospective study was approved by the Institutional Review
Board and was registered on ClincalTrials.gov (NCT05287750 and
NCT05200377). Informed written consent was obtained from all
participants. The study complied with both the Declaration of Hel-
sinki and the Health Insurance Portability and Accountability Act.

Participants undergoing a clinical brain MRI examination or
healthy volunteers were consecutively recruited at our local hospital
from January 2022 to May 2022. Inclusion criteria consisted of an
agreement to participate, age of 18 years or older, the ability to
remain in the supine position and still for both the 3T and 7T MRI
examinations. Exclusion criteria were general contraindications for
MRI. Both the 3T and 7T MPRAGE images were acquired as addi-
tional scans at the radiology department of our local hospital.
Contrast-enhanced 3T and 7T MRI were only acquired in part of
patients. Clinical characteristics of the study participants are summa-
rized in Table 1. The paired 3T and 7T data were acquired from
122 participants (55 men, 67 women; mean age, 42 years �15),
including healthy subjects and patients with tumor, cerebrovascular
disease, multiple sclerosis, and other conditions. Among the
122 paired data sets, 66 were nonenhanced T1-weighted images,
and 56 were contrast-enhanced T1-weighted images.

TABLE 1. Clinical Characteristics of the Study
Participants

Characteristics
Nonenhanced

image

Contrast-
enhanced
image Total

No. of subjects 66 56 122

Age (y)a 36 � 14 49 � 12 42 � 15

Sex

Female 41 26 67

Male 25 30 55

Clinical
indication

Brain tumor 10 45 55

Healthy 33 0 33

Cerebrovascular
disease

14 7 21

Multiple
sclerosis

8 2 10

Encephalitis 1 1 2

Neuromyelitis
optica

0 1 1

aData are means � SDs; The clinical indications of patients were
confirmed from the corresponding diagnostic reports.
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MRI Protocols
MRI examinations were performed on a 7T scanner (MAGNETOM
Terra; Siemens Healthineers, Erlangen, Germany) using a 32-channel
head coil (Nova Medical; Wilmington, MA) and a 3T scanner
(MAGNETOM Skyra; Siemens Healthineers, Erlangen, Germany)
using a 20-channel head coil. For both 3T and 7T MRI, T1-weighted
images were acquired using a 3D MPRAGE sequence. The details of
acquisition parameters are described in Table 2. Contrast-enhanced
T1-weighted images were first acquired at 3T after intravenous
administration of Gadolinium contrast agent (0.1 mmol/kg
Gadolinium-DTPA; Beijing BeiLu Pharmaceutical Co., Ltd, Beijing,
China) with high pressure injector. The time intervals between the
contrast agent injection and the acquisition of 3T image and 7T
image were 6 minutes 27 sec � 1 minutes 22 sec and 26 minutes
9 sec � 4 minutes 49 sec, respectively.

Data Preprocessing
The 7T images were processed with N4 bias field correction,15 and
a brain mask of the 7T images was obtained by using ROBEX.16

Then, the 3T images were coregistered to the corresponding 7T
images using FLIRT in FSL package with 12-parameter affine regis-
tration.17 After registration, the brain mask was applied to the 3T
and 7T images for skull removal, and the intensity values of the two
images were normalized to [0, 1]. The data set were randomly split
into training and test datasets (80% training and 20% test). Among
the nonenhanced dataset, 53 were randomly selected for training
and 13 were used for testing. Among the contrast-enhanced dataset,
46 were randomly selected for training and 10 were used for testing.
All of the following image evaluation and illustration was performed
on the test data of 23 participants. The volume data of each partici-
pant was split into axial slices, with each slice serving as a separate

training example. There was no data overlap between the training
dataset and test dataset.

Network Architecture
To synthesize 7T images with good texture details and perceptual
quality, a deep learning model (SynGAN) based on a generative
adversarial network was proposed.18 As shown in Fig. 1, SynGAN
consists of a generator and a discriminator. The generator is used to
synthesize 7T images from the corresponding 3T images, and the
discriminator tries to distinguish the synthetic 7T images from
the real ones. We adopted U-Net as the generator, because the
U-Net has advantages of multilevel decomposition, multichannel fil-
tering and multiscale skip connections.19 The advantages of the
U-Net lead to robust and superior reconstructed images compared
with other architectures.18,19 The detailed architecture of U-Net is
provided in our previous study.20 The discriminator takes the 3T
image with the real 7T image or with the synthesized 7T image as
an input pair, and outputs a decision variable for binary classification
(see details in Fig. S1 in the Supplemental Material). The details of
the network architecture are described in Methods in the Supple-
mental Material.

Training and Implementation Details
SynGAN was implemented using the PyTorch package (version
1.09; https://pytorch.org). All training and testing were performed
on a desktop computer with an Intel Xeon® Gold 6226R CPU,
128 GB RAM, and an NVIDIA RTX 3090 GPU. During the train-
ing process, the network weights of the generator and discriminator
were initialized using the Xavier method21 and optimized using the
Adam algorithm,22 with a fixed learning rate of 0.0001, β1 = 0.5,
β2 = 0.999, and batch size of 4. The loss function of the generator
and discriminator are described in Methods in Supplemental
Material. The total training time for the nonenhanced and contrast-
enhanced datasets was �13 h and 10 h, respectively. Once the train-
ing process was completed, the parameters of the SynGAN were
fixed and adopted for direct transformation of 3T images to
corresponding synthetic 7T images. Source code is available from
the corresponding author upon reasonable request.

Image Evaluation
The SynGAN was compared with three commonly used medical
image synthesis methods, i.e., CycleGAN,23 U-Net,19,24 and WATNet.5

The CycleGAN can achieve unsupervised image-to-image trans-
lation by using a cycle-consistency loss. The U-Net has the same
architecture and details as the generator of the SynGAN. The
CycleGAN and U-Net were implemented using the source codes
provided in a previous study.10 The WATNet was implemented
using the PyTorch package based on the source codes provided
in a previous study.5 Two quantitative image quality metrics,
peak signal-to-noise ratio (PSNR) and structure similarity
(SSIM),25 were used to compared the performance of different
synthesis methods on the nonenhanced and contrast-enhanced
test data. Both the PSNR and SSIM were only computed over
the brain mask.

The qualitative image quality of 3T, 7T, and synthetic 7T
images with SynGAN was individually and blindly evaluated by
three radiologists (K.C., Y.Q., and C.L. with 6, 8, and 2 years of

TABLE 2. Imaging Parameters for 3T and 7T MRI

Parameter 3T 7T

Slice orientation Sagittal Sagittal

Bandwidth (Hz/px) 240 250

Matrix 224 � 210 320 � 300

Field of view (mm2) 224 � 210 224 � 210

Slice thickness (mm) 1.0 0.7

Number of slices 176 208–224

Voxel size (mm3) 1.0 � 1.0
� 1.0

0.7 � 0.7
� 0.7

Repetition
time (msec)

2300 2300

Echo time (msec) 2.99 1.95

Inversion time (msec) 900 1050

Flip angle (degrees) 9 8

Scan time (minute:sec) 4:54 5:14
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experience in brain MRI interpretation, respectively) in terms
of overall image quality, artifacts, sharpness, contrast, and visualiza-
tion of vessel based on 5-point Likert scales.26,27 The evaluations
were performed for each subject on a slice-by-slice basis. The criteria
for image quality, artifacts, sharpness, contrast, and visualization of
vessel assessment on the 5-point Likert scale are presented in Table S1
in the Supplemental Material. The vessel visualization was evaluated
based on a previous study of high-quality delineation of intracranial
arterial vasculature at 7T MPRAGE MRI.28 Because the deep learning
model might introduce “instabilities” in image reconstruction,29 the
radiologists also compared the synthetic and real 7T images in a side-
by-side manner and evaluated the following: whether the
synthetic images removed (yes or no) or introduced (yes or no) impor-
tant features that may alter the diagnostic interpretation.

Quantitative assessment was based on contrast-to-noise ratio
(CNR) by measuring signal intensity in two regions of interest
(ROIs).14 For the nonenhanced test data, the two ROIs were placed in
homogeneous regions of white matter and adjacent gray matter. For the
contrast-enhanced test data, the two ROIs were placed in homogeneous
tumor enhancement region and contralateral normal white matter.
Then, the CNR was calculated using the following equation13:

CNR¼ abs μROI1 �μROI2

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ROI1 þσ2ROI2

� �r

where μROI1 and μROI2 are the mean values, and σROI1 and σROI2 are

the standard deviation (SD) of the two ROIs, respectively. The mea-
surement was performed by two radiologists (K.C. and C.L. with
6 and 2 years of experience in brain MRI interpretation, respectively)
and calculated per subject. Among the contrast-enhanced test data,
two subjects without tumor enhancement were excluded from the
CNR assessment.

Statistical Analysis
The image quality scores were compared using Wilcoxon signed rank
tests. The CNR values were compared using paired two-tailed

Student’s t tests. All statistical analyses were performed using SPSS
(version 24.0; IBM, Armonk, NY), and statistical significance was
set at P < 0.05. Interobserver variability was assessed by using
intraclass correlation coefficients (ICCs). This coefficient was inter-
preted as follows: <0.40, poor agreement; 0.40–0.59, fair agreement;
0.60–0.75, good agreement; and 0.76–1.00, excellent agreement.26

Results
Representative images of 3T, 7T, and synthetic 7T obtained
using different synthesis methods are shown in Fig. S2 in the
Supplemental Material. The mean PSNR and SSIM values
obtained using the different synthesis methods are summa-
rized in Figs. S3 and S4 in the Supplemental Material. The
synthetic 7T images with CycleGAN showed obvious artifacts
and blurred structures. Although U-Net offered highest
PSNR and SSIM values in Figs. S3 and S4 in the Supplemen-
tal Material, it resulted in noticeable smooth patterns in the
synthetic 7T images. WATNet generates 7T images with
improved tissue contrast and certain smooth patterns. Syn-
GAN generated high-quality synthetic images with texture
details and perceptual quality comparable to the real 7T
images.

Representative 3T, 7T, and synthetic 7T nonenhanced
images in a healthy participant and a patient with left middle
cerebral artery occlusion are shown in Fig. 2. The synthetic
7T images provide improved sharpness and contrast com-
pared with the 3T images and show comparable image quality
to the 7T images. For example, both the real and synthetic
7T images achieve better image contrast among gray matter,
white matter and the cerebrospinal fluid. In Fig. 2c, the syn-
thetic 7T images depict the characteristics of the old cerebral
infarction that include encephalomalacia and cerebral atro-
phy. Both the real and synthetic 7T images show intensity
inhomogeneities, as indicated by the white arrows in Fig. 2.

FIGURE 1: The scheme of SynGAN for synthesizing 7T images from 3T images. The SynGAN consists of a generator and a
discriminator.
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Representative images of 3T, 7T, and synthetic 7T
nonenhanced images in the presence of pathologic diseases
are shown in Fig. 3. In these patients, the synthetic 7T
images show better sharpness and lesion contrast compared
with the 3T images, and visually resemble the acquired 7T
images for visualization of various pathology, including
encephalomalacia (Fig. 3a), demyelination (Fig. 3b), and
meningioma (Fig. 3c).

Representative contrast-enhanced T1-weighted images
of 3T, 7T, and synthetic 7T are shown in Fig. 4 and Fig. S5
in the Supplemental Material. It can be observed that the
synthetic 7T images clearly capture the boundaries, internal
architecture, and sharpness of the brain tumors, which are
closer to the real 7T images than the 3T images. For example,
the synthetic 7T images enable faithful depiction of the ring
enhancement and surrounding edema in brain metastases of

lung adenocarcinoma in Fig. 4a, and show the micro-
metastases (Fig. S5 in the Supplemental Material) and tiny
enhanced lesions in the cystic brain metastases more clearly in
Fig. 4b. In Fig. 4c, the synthetic 7T image provides superior
depiction of glioma microvascularity compared with the 3T
images. In addition, the artifacts in Fig. 4a,c are also success-
fully removed in the corresponding synthetic 7T images.

Image quality scores for 3T, 7T, and synthetic 7T
images are shown in Fig. 5. Compared to nonenhanced
T1-weighted images at 3T, the synthetic 7T images achieve
significantly higher overall image quality (mean score � SD,
5.0 � 0 for synthetic 7T images and 3.9 � 0.3 for 3T
images), sharpness (mean score, 5.0 � 0 for synthetic 7T
images and 3.1 � 0.3 for 3T images), contrast (mean score,
5.0 � 0 for synthetic 7T images and 3.9 � 0.3 for 3T
images), and visualization of vessel (mean score, 3.8 � 1.0 for

FIGURE 2: Comparisons of representative 3T, 7T, and synthetic 7T nonenhanced images. (a,b) T1-weighted images in a 22-year-old
healthy participant. (c) T1-weighted images in a 31-year-old patient with left middle cerebral artery occlusion. Improved tissue
contrast and sharpness are observed in the corresponding synthetic 7T images. The golden arrow indicates old cerebral infarction.
The white arrows indicate intensity inhomogeneities. The image quality scores (overall image quality/artifacts/sharpness/contrast/
visualization of vessel) are listed under each image.

1624 Volume 59, No. 5
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synthetic 7T images and 1.5 � 0.9 for 3T images) scores,
with no significant difference in artifacts score (P = 0.317;
mean score, 5.0 � 0 for synthetic 7T images and 4.8 � 0.6
for 3T images). Compared to contrast-enhanced T1-weighted
images at 3T, the synthetic 7T images achieve significantly
higher overall image quality (mean score, 4.9 � 0.3 for syn-
thetic 7T images and 3.9 � 0.3 for 3T images), artifacts
(mean score, 5.0 � 0 for synthetic 7T images and 3.9 � 1.0
for 3T images), sharpness (mean score, 4.7 � 0.5 for syn-
thetic 7T images and 3.8 � 0.4 for 3T images), contrast
(mean score, 5.0 � 0 for synthetic 7T images and 3.9 � 0.3
for 3T images), and visualization of vessel (mean score,

5.0 � 0 for synthetic 7T images and 4.4 � 0.5 for 3T
images) scores.

For nonenhanced T1-weighted images, there was no
significant difference between 7T and synthetic 7T images in
terms of all the evaluation criteria, including overall image
quality (P = 0.317; mean score, 4.9 � 0.3 for 7T images),
artifacts (P = 0.317; mean score, 4.9 � 0.3 for 7T
images), sharpness (P = 1.0; mean score, 5.0 � 0 for 7T
images), contrast (P = 1.0, mean score, 5.0 � 0 for 7T
images), and visualization of vessel (P = 0.206, mean score,
4.2 � 1.3 for 7T images) scores. For contrast-enhanced
T1-weighted images, there was also no significant difference

FIGURE 3: Comparisons of representative 3T, 7T, and synthetic 7T nonenhanced images. (a) T1-weighted images in a 70-year-old
man with ischemic cerebrovascular disease. (b) T1-weighted images in a 56-year-old man with left paraventricular lesion. (c)
T1-weighted images in a 63-year-old woman with meningioma. The synthetic 7T images provide better sharpness and lesion contrast
compared with the 3T images. The golden arrows in (a–c) indicate the lesions of encephalomalacia, demyelination, meningioma,
respectively. The image quality scores (overall image quality/artifacts/sharpness/contrast/visualization of vessel) are listed under
each image.
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between 7T and synthetic 7T images in terms of all the evalua-
tion criteria, including overall image quality (P = 0.317; mean
score, 5.0 � 0 for 7T images), artifacts (P = 0.180; mean score,
4.7 � 0.7 for 7T images), sharpness (P = 0.317; mean score,
4.9 � 0.3 for 7T images), contrast (P = 1.0; mean score,
5.0 � 0 for 7T images), and visualization of vessel (P = 1.0;
mean score, 5.0 � 0 for 7T images) scores.

The CNR assessment results of 3T, 7T, and synthetic
7T images are shown in the boxplots in Fig. S6 in the Sup-
plemental Material. For the nonenhanced test data, the mean
CNR values for 3T, 7T, and synthetic 7T images were:
8.19 � 0.98, 9.27 � 1.56, 9.06 � 1.46, respectively. For the
contrast-enhanced test data, the mean CNR values for 3T,

7T, and synthetic 7T images were: 6.00 � 1.53,
8.80 � 2.71, 9.25 � 2.82, respectively. For both non-
enhanced and contrast-enhanced datasets, the synthetic 7T
images offered significantly higher CNR values than the 3T
images (P < 0.05), with no significant difference compared
with the real 7T images (P = 0.178 for the nonenhanced test
data and P = 0.214 for the contrast-enhanced test data).

The interobserver agreement for image quality scores
assessment between the three readers were almost excellent
for all the evaluation criteria (ICC = 0.791 for overall image
quality, ICC = 0.783 for artifacts, ICC = 0.759 for sharp-
ness, ICC = 0.748 for contrast, and ICC = 0.877 for visuali-
zation of vessel). The interobserver agreement for CNR

FIGURE 4: Comparisons of representative contrast-enhanced T1-weighted images at 3T, 7T, and synthetic 7T. (a) Images in a
47-year-old man with brain metastases of lung adenocarcinoma. (b) images in a 44-year-old woman with brain metastases of lung
adenocarcinoma. (c) Images in a 45-year-old man with low-grade gliomas. The synthetic 7T images can clearly depict the boundaries,
internal architecture, and sharpness of the brain tumors. The white arrows indicate motion artifacts. The golden arrows in (a–c)
indicate the ring enhancement, tiny enhanced lesion, and feeding artery, respectively. The image quality scores (overall image
quality/artifacts/sharpness/contrast/visualization of vessel) are listed under each image.
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assessment between the two readers were also excellent in
both the nonenhanced (ICC = 0.900) and contrast-enhanced
(ICC = 0.944) datasets. Moreover, the synthetic images did
not remove or introduce important features in either the non-
enhanced or contrast-enhanced test data. Average synthetic
time was 11.4 msec per slice (2.95 sec per participant) for
SynGAN in PyTorch on the RTX 3090 GPU.

Discussion
In this study, we developed and clinically evaluated a Syn-
GAN approach for synthesizing high quality 7T images from
3T images. Our results show that the synthetic 7T images
significantly outperform the 3T images in terms of overall
image quality, sharpness, contrast, and visualization of vessel
for both nonenhanced and contrast-enhanced test data. In
addition, SynGAN can provide comparable performance to
acquired 7T images in terms of overall image quality, artifact,
sharpness, and contrast. The SynGAN approach enables syn-
thetic speeds of �11 msec per slice, which allows real-time
generation of synthetic 7T images for practical clinical
deployment.

In recent years, there has been marked progress in deep
learning methods to resolve various medical image synthesis

tasks, focusing on multimodal MR image synthesis8,10 or
cross-modality image synthesis (eg, MRI-to-CT synthesis).30

Synthesis of 7T images from the corresponding 3T images is
challenging because the two images differ not only in resolu-
tion, but also in contrast.5 In this work, we adopted a GAN-
based framework to learn the complex 3T-to-7T mapping,
because GAN can effectively capture the high frequency
details in the target image and have achieved promising
results in synthesizing various types of medical image.9 Our
results show that SynGAN is capable of synthesizing 7T
images with improved tissue contrast and sharpness that are
similar to the acquired 7T images. The improved tissue con-
trast is promising as it may assist in more accurate brain tis-
sues or substructures (eg, hippocampal subfields)
segmentation, which is a fundamental step in functional MRI
analysis.

In our study, CycleGAN showed inferior performance
in synthesizing 7T images, which may be attributed to the
fact that cycle-consistency is sensitive to perturbation and
may produce multiple plausible solutions.10 In terms of
PSNR and SSIM, U-Net with pixel-wise loss alone achieved
the best performance. Nevertheless, minimizing pixel-wise
loss encourages finding pixel-wise averages of plausible solu-
tions which are typically overly-smooth and have poor per-
ceptual quality.31 Therefore, GAN based model is not
designed and trained to achieve the highest PSNR as this does
not capture the visual perception and texture details.32

Although previous studies have demonstrated the feasi-
bility of synthesizing 7T image using deep learning, the appli-
cability of this method for clinical brain imaging is yet to be
explored.4–6 Therefore, test data with different clinical indica-
tions were used evaluate the performance of synthetic 7T
images in this study. Example results show that the synthetic
7T images may provide clear visualization of a wide range
of pathology, including encephalomalacia, demyelination,
and brain tumor. Furthermore, the contrast-enhanced
T1-weighted images at synthetic 7T may enhance visualiza-
tion of tumor boundaries, internal architectures, as well as
subtle pathology. This may be particularly beneficial in refin-
ing radiation target volume delineation or improving com-
pleteness of tumor resection.33 In addition, the synthetic 7T
images enabled better depiction of microvascular properties of
gliomas, which is useful for predicting tumor grade and better
characterize microscopic infiltration.2

Patient abnormalities are heterogeneous, and some
abnormalities are rare and unlikely to be included in the
training data set.34 In addition, image synthesis is an ill-posed
problem and has intrinsic uncertainty.35 Therefore, one of
the most important concerns of image synthesis with deep
learning is whether they can faithfully generate abnormali-
ties in clinical practice. Although spurious features or
removal of abnormalities are not observed in the synthetic
7T images in our study, it is important to quantify and

FIGURE 5: Comparisons of qualitative image quality scores
between 3T, 7T, and synthetic 7T images for nonenhanced (a)
and contrast-enhanced (b) T1-weighted images. Image quality
scores were evaluated independently by three blinded readers
in terms of overall image quality, artifacts, sharpness, contrast,
and visualization of vessel. Error bars are SD across the test
data. *Statistically different results with P < 0.05, ** denotes
P < 0.001.

May 2024 1627

Duan et al.: Synthesized 7T MRI Using Deep Learning

 15222586, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jm

ri.28944 by H
uazhong U

niversity O
f Sci &

 T
ech, W

iley O
nline L

ibrary on [21/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



display the pixel-wise synthetic uncertainty for clinical
translation and deployment.36

Limitations
First, the T1-weighted images at 7T were acquired using the
MPRAGE sequence, which suffers from strong intensity
inhomogeneities due to B1 field inhomogeneities.13 This
results in poor visualization of subtentorial structures (eg, cer-
ebellum) and may be alleviated by using the MP2RAGE
sequence in future study.37 Second, considering the safety
concerns about Gadolinium-based contrast agents in the
medical community,38 we acquired the contrast-enhanced 3T
and 7T MRI data with a single injection of contrast agent,
which raises a question about the potential influence of the
time interval between the two MRI measurements. Although
our paired 3T and 7T acquisitions were performed within the
time range before the enhanced signal decrease,39 it would be
more appropriate to acquire contrast-enhanced 7T MRI
immediately after contrast agent administration in future
studies. Third, synthetic 7T image generation was evaluated
on a small number test data with heterogeneous pathology
and MRI scans from a single scanner with minimal variations
in imaging parameters. In the future, additional evaluation on
prospective datasets with variable clinical settings and MRI
scanners will be performed to further demonstrate the clinical
potential of the synthetic 7T images.

Conclusion
The synthetic 7T images with generative adversarial network
achieved high image quality and good tissue contrast, poten-
tially providing an alternative way to achieve the advantages
of ultra-high field 7T MRI in clinical brain imaging.
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