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Abstract

Background: Magnetic resonance imaging (MRI) is a crucial technique for
both scientific research and clinical diagnosis. However, noise generated dur-
ing MR data acquisition degrades image quality, particularly in hyperpolarized
(HP) gas MRI. While deep learning (DL) methods have shown promise for MR
image denoising, most of them fail to adequately utilize the long-range infor-
mation which is important to improve denoising performance. Furthermore, the
sample size of paired noisy and noise-free MR images also limits denoising
performance.

Purpose: To develop an effective DL method that enhances denoising per-
formance and reduces the requirement of paired MR images by utilizing the
long-range information and pretraining.

Methods: In this work, a hybrid Transformer-convolutional neural network
(CNN) network (HTC-net) and a self-supervised pretraining strategy are pro-
posed, which effectively enhance the denoising performance. In HTC-net, a
CNN branch is exploited to extract the local features. Then a Transformer-
CNN branch with two parallel encoders is designed to capture the long-range
information. Within this branch, a residual fusion block (RFB) with a resid-
ual feature processing module and a feature fusion module is proposed to
aggregate features at different resolutions extracted by two parallel encoders.
After that, HTC-net exploits the comprehensive features from the CNN branch
and the Transformer-CNN branch to accurately predict noise-free MR images
through a reconstruction module. To further enhance the performance on limited
MRI datasets, a self-supervised pretraining strategy is proposed. This strategy
employs self-supervised denoising to equip the HTC-net with denoising capa-
bilities during pretraining, and then the pre-trained parameters are transferred
to facilitate subsequent supervised training.
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Results: Experimental results on the pulmonary HP '>°Xe MRI dataset (1059
images) and IXI dataset (5000 images) all demonstrate the proposed method
outperforms the state-of-the-art methods, exhibiting superior preservation of
edges and structures. Quantitatively, on the pulmonary HP '2°Xe MRI dataset,
the proposed method outperforms the state-of-the-art methods by 0.254—
0.597 dB in PSNR and 0.007-0.013 in SSIM. On the IXI dataset, the proposed
method outperforms the state-of-the-art methods by 0.3—0.927 dB in PSNR and
0.003-0.016 in SSIM.

Conclusions: The proposed method can effectively enhance the quality of MR
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1 | INTRODUCTION

Magnetic resonance imaging (MRI) is a widely used,
nonradioactive imaging technique that could provide
valuable structural and functional information for both
scientific research and clinical diagnosis. Structural MRI
facilitates visualization of tissue and organ anatomy
with high levels of detail. For example, in brain structural
MRI, distinctions between white matter, gray matter,
and cerebrospinal fluid enable identification of lesions.
Functional MRI, on the other hand, reveals physio-
logical activity of tissues and organs. For instance,
hyperpolarized (HP) '2°Xe MRI provides lung functional
information regarding gas-gas and gas-blood exchange
that are highly clinically relevant for lung disease
diagnosis."? However, noise arising from electronics
and scanned subjects may decrease the accuracy
of quantitative MR measurements and subsequently
affect accurate clinical decision making3* Therefore,
denoising is a crucial step in MR imaging workflow.
Many traditional MR image denoising methods have
been developed based on filtering or to perform in trans-
formation domain. For example, non-local mean (NLM)
filtering eliminates noise by nonlocal averaging of all sig-
nal intensities in an image.® This approach was adopted
by Manjén et al. to denoise MR images with Rician noise,
leading to unbiased NLM (UNLM) filtering.® Manjon et al.
developed a prefiltered rotation invariant NLM (PRINLM)
approach by taking advantages of self-similarity prop-
erties and sparseness in MR images.” Denoising has
also been performed in transform domain by transform-
ing spatial images into other domains, and so forth the
Fourier, wavelet, and curvelet domain® Dabov et al. com-
bined the concepts of domain transform and nonlocal
similarity and developed an image denoising algorithm
denominated block-matching and 3-D filtering (BM3D),
which was extended to BM4D by Maggioni et al®'°
While these methods can provide reasonable denoising
performance, they rely on explicit modeling of image
and noise patterns, which is difficult to describe and
implement for noisy MR images in clinical workflow.!"
Additionally, most of these approaches involve noise

images, which helps improve the diagnosis accuracy in clinical.

deep learning, hyperpolarized gas MRI, image denoising, MR, self-supervised

estimation, time-consuming optimizations, and manual
parameter tuning, resulting in a lack of adaptability.'?

Recently, deep learning (DL)-based data-driven
denoising methods have demonstrated superior perfor-
mance compared to traditional methods. Zhang et al.
proposed a feed-forward denoising convolutional neural
network (DnCNN) to eliminate Gaussian noise by utiliz-
ing batch normalization and residual learning."® Jiang
et al. and You et al. improved the DnCNN by tailoring
the architecture to effectively handle Rician noise that
is common in MR images.'*'® Ran et al. introduced
a residual encoder-decoder Wasserstein generative
adversarial network (RED-WGAN) with mean squared
error (MSE) and adversarial losses to alleviate the effect
of over-smoothing.'® However, these denoising meth-
ods are based on convolutional neural network (CNN),
which is known to be limited in capturing long-range
information.!” While capturing long-range information
enables the utilization of contextual image information
to maintain the continuity of anatomical structures, lead-
ing to more reasonable denoising results. To address
this issue, Xu et al. proposed a deep adaptive blending
network (DABN) that utilized a residual dense block
with a large receptive field,'’’ and Aetesam and Maji
employed dilated convolutions to expand the receptive
field of the network.' Although these CNN-based
somewhat improved the capture range, utilization of
such information remains suboptimal because of the
inherent limitations of the CNN architectures.'®

In contrast to CNN, Transformer represents another
DL model that is particularly effective at capturing and
utilizing long-range information.’® This capability has
led to its widespread adoption in the field of natural lan-
guage processing. Although Transformer is rarely used
in computer vision, some forward-looking studies have
demonstrated numerous promise, for example, in natu-
ral image denoising.'®2%2" However, transformer-based
methods typically rely on large-scale datasets, restrict-
ing their application in the medical domain.?? Besides,
the transformer was reported to have limitations in
locality, which could result in the loss of high-frequency
details and over-smoothing in denoised images.?’
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Another common challenge in DL-based MR image
denoising methods is the requirement of a large num-
ber of paired noisy and noise-free images for training,
which is difficult to acquire. Self-supervised denoising
offers a potential solution by utilizing only noisy images
for training,>>-2% but this technique is primarily effective
with zero-mean noise and unsuitable for MR images with
non-zero mean noise.?’

To address these challenges, we propose a novel
hybrid Transformer-CNN network (HTC-net) with a self-
supervised pretraining strategy for MR image denoising.
The HTC-net leverages the advantages of Transformer
and CNN to improve image denoising performance by
capturing long-range information using Transformer
while maintaining locality using CNN. In addition, we
employ a residual fusion block (RFB) to effectively
aggregate feature maps at different resolutions by elim-
inating the semantic divergence between Transformer
and CNN. The pretraining strategy employes self-
supervised learning to reduce the need for large-scale
paired MR images. Specifically, the strategy performs
self-supervised denoising during pretraining and facil-
itates subsequent supervised training for denoising
through transfer learning. Meanwhile, the bias intro-
duced by nonzero mean noise in MR images during
pretraining can be corrected by supervised training.
To validate the effectiveness of our proposed method,
we conduct extensive experiments encompassing both
functional and structural MRI datasets. The contributions
to this work can be summarized as follows:

1. We propose a novel HTC-net for MR image denoising,
which provides the capability of capturing long-range
information and maintaining locality.

2. We propose an effective RFB to aggregate hybrid
features extracted by Transformer and CNN
encoders.

3. We propose a self-supervised pretraining strategy,
which further improves algorithm performance and
reduces the requirements of paired noisy and noise-
free MR images.

4. The proposed method outperforms several state-of-
the-art methods for MR image denoising in the lung
and brain.

2 | MATERIALS AND METHODS

21 | Problem formulation

The main source of noise in MRI is thermal noise,
which originates from the scanned object. The variance
of thermal noise can be explained as the combined
noise variances from independent stochastic processes
related to the body, the coil, and the electronics* During
MR data acquisition, the raw k-space data are complex
values, and both the real and imaginary components are
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corrupted by Gaussian noise. The complex MR image is
then reconstructed from k-space data by inverse Fourier
transform. Due to the linearity and orthogonality of the
Fourier transform, it preserves the Gaussian character-
istics of the noise. Hence, the magnitude MR image can
be characterized as follows:

x=\/(ycosgo+n,)2+(ysingo+n,)2 1

x denotes a noisy MR image, y represents a noise-free
MR image, ¢ indicates the phase, and n, and n; are inde-
pendent and identically distributed Gaussian noise. This
is a nonlinear mapping which transforms the Gaussian
distribution into a Rician distribution.?

MR image denoising is to restore the noise-free MR
image y from the noisy MR image x. This process
involves finding a mapping f. x — X, where X repre-
sents the denoised version of x, by minimizing the error
between % and y:

argming ||y — X|| (2)

In this work, our method focuses on magnitude MR
images and Rician noise. The mapping f is the network
we propose.

2.2 | HTC-net

Figure 1 illustrates the architecture of the proposed
HTC-net, which consists of a CNN branch and a
Transformer-CNN branch. The CNN branch is exploited
to extract the local features. Meanwhile, the Transformer-
CNN branch comprises two encoders in parallel to
effectively capture long-range information. Let x € R
" be an input noisy MR image as input, where C, H, and
W denote the number of channels, height, and width of
X, respectively. The corresponding denoised MR image
% € RC H-W can be generated by the proposed network
as follows:

X = f(x) = R(C(x), TC(x)) @)

R(-), C(-), and TC(-) denote the reconstruction module,
CNN branch and Transformer-CNN branch respectively.

2.21 | CNN branch

In the CNN branch, a series of convolutional layers
are employed to extract local features from noisy MR
images. Convolution operations are known for their
effectiveness in capturing local features, making this
branch particularly suitable for enhancing locality within
the image. To minimize the potential loss of information
caused by downsampling operations, the CNN branch is
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FIGURE 1

Down-conv + GN + LReLu

Up-sample + Conv + GN + LReLu Conv

The overview of the proposed HTC-net, which consists of the CNN branch and Transformer-CNN branch. The CNN branch

comprises a series of convolutional layers, which generate feature maps with the same size as the input image. The Transformer-CNN branch
integrates a Transformer encoder,a CNN encoder, and a decoder. The encoders are designed to work in parallel to extract long-range
information and local features. Then RFBs are employed to aggregate these hybrid features at different resolution during decoding process.
Finally, the hybrid features of both the CNN branch and Transformer-CNN branch are aggregated to obtain the denoised MR image. HTC-net,

hybrid transformer-CNN network; RFBs, residual fusion blocks.

designed to keep the sizes of feature maps the same as
the inputimage. This ensures that the spatial information
encoded in the feature maps remains intact and aligns
with the original input, facilitating accurate and efficient
feature extraction. In this work, the CNN branch com-
prises six layers of 3 x 3 convolutions with stride 1 x 1.
The output of the CNN branch is as follows:

X; = Cx) (4)

X, € RN- "W N denotes the number of channels of X,
which is set to 64 in this work.

2.2.2 | Transformer-CNN branch

In the Transformer-CNN branch, the encoder in Trans-
former network is employed to enhance the ability of the
network in capturing long-range information, while the
CNN encoder enhances local feature extraction capa-
bilities. Given a noisy MR image x, the Transformer-CNN
branch first uses two 3 x 3 convolutional layers to extract
shallow features Fy € RN: - W which is favorable for
early visual processing.'® The shallow features F, are

then entered into a Transformer encoder and a CNN
encoder to extract deep features.

Transformer encoder To achieve accurate denois-
ing results, it is essential to incorporate the long-range
information of the MR images during the denoising
process. Here, Transformer encoder is used to extract
deep features from shallow features Fy to enhance
denoising performance by leveraging long-range infor-
mation in the input image. In particular, shallow features
Fy are split into nonoverlapping patches and then
mapped into an embedding space. The Transformer
encoder is utilized to extract long-range information from
these embeddings. Specifically,the embedding layer first
downsamples shallow features Fy by applying stacked
convolutional layers:

Fi = D(Fo) ®)

D is a stack of convolutional layers, F € RN #/M. WM
are downsampled feature maps with M denoting the
downsampling factor. F6 are split into Np nonoverlap-
ping patches of size (P, P) with Np = HW/(M?P?), which
are further flattened to N'P?-dimensional vectors. After
that, the vectors are embedded onto an Np-dimensional
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vectors using trainable linear projections?®:
N,
20 = |FoPe: FePei s Fy " Pe] (6)

7o € RNPND are the patch embeddings, Pk is the train-

able linear projection, Fj) RN'P? is the pth patch. These
patch embeddings are added with a learnable posi-
tional encoding P2°° and then fed into the Transformer
encoder consisting of L Transformer blocks®?:

7o =z + P2 (7)
z; = TB(z)-4) (8)

z; are the output of the th Transformer block, TB(-)
denotes Transformer block. The outputs of the interme-
diate Transformer blocks are saved and utilized in the
subsequent decoding process at different resolutions.
By incorporating these intermediate features, we aim to
enhance the restoration of details of the MR image. This
mechanism allows the decoder to leverage not only the
high-level global information but also the finer features
captured in the intermediate stages of the encoding pro-
cess, leading to potentially more comprehensive and
accurate denoising results. In this work, M, N', Np,and L
are setto 16, 1024,768,and 12 respectively. The outputs
of the 4th, 8th, and 12th Transformer block are utilized
to recover noise-free MR images.

CNN encoder Although the Transformer encoder
effectively utilizes long-range information to achieve rea-
sonable denoising results, it has been reported to have
a limitation in locality, resulting in potential loss of fine
structures such as small lesion regions2! To address
this issue, a CNN encoder that consists of multiple
convolutional layers is employed. This CNN encoder is
designed to enhance locality by capturing a hierarchy
of localized features. By parallelizing the CNN encoder
and the Transformer encoder, we aim to compensate
for the locality limitations inherent in the Transformer.
This architecture enables the HTC-net to effectively cap-
ture both global context and fine-grained local details,
thereby improving the overall denoising performance.

In contrast to the CNN branch, the CNN encoder pro-
vides a hierarchy of local features, and these multilevel
features are fused with features extracted by Trans-
former encoder. This process involves information loss
caused by downsampling operations, which can be com-
pensated by the CNN branch. As shown in Figure 1,
the CNN encoder incorporates 2 contraction steps each
involves halving the spatial resolution and doubling the
channel dimension of the input features. Similar to the
Transformer encoder, the output of each contraction
step is utilized in subsequent decoding processes to
restore MR image details:

Fc = CE(Fo) 9)

MEDICAL PHYSICS——

Fce RNxd. Hid, Wid denote feature maps extracted
by CNN encoder, CE(-) denotes CNN encoder. In this
work, d is set to 2 and 4 for the two contraction steps,
respectively.

Decoder After processing the shallow features F,
a decoder is utilized to aggregate and decode the
global and local features generated by the Transformer
encoder and the CNN encoder. To facilitate information
flow and aid in the fusion of features, skip connections
are utilized between the decoder and encoders. The
layers with skip connections in the encoder include
three steps:

1. upsampling the embeddings of Transformer encoder.
To effectively integrate the features of the two
encoders, the Transformer embeddings are first
reshaped into 2D feature maps. Subsequently, the
feature maps are upscaled to align with the dimen-
sions of their corresponding CNN feature maps.
Specifically, the Transformer embeddings z4, zg, and
Z4, are processed using 3, 2, and 1 upsampling oper-
ations, respectively. This process ensures alignment
and fusion of feature maps generated by both the
Transformer and CNN encoders.

2. aggregating the hybrid features. In this step,a RFB is
employed to aggregate the upsampled Transformer
feature maps, the CNN feature maps, and the upsam-
pled feature maps. As shown in Figure 2, the RFB
consists of a residual feature processing module
and a feature fusion module. In the residual feature
processing module, residual blocks are utilized to pro-
cess the upsampled Transformer feature maps and
the CNN feature maps, which can be stated as:

F} = Fr + RB(Fr, Fo, Fy) (10)
Fl. = Fc + RB(Fr, Fo, Fu) (11)

Fre RNxd. Hld, Wid denote the upsampled Trans-
former feature maps, F;; € RNxd. H/d. Wid denote the
upsampled feature maps, and RB(-) denotes resid-
ual block. Here, the residual blocks are designed to
adjust biases for the upsampled Transformer and the
CNN feature maps to minimize semantic divergence
and facilitate effective feature fusion. In the feature
fusion module, hybrid F'., Fi,, and F, are fused by 1
X 1 convolution:

Fuuse = CN(F, Fi, Fy) (12)

CN(:) is the 1 x 1 convolution operation, F s, € RV*%
Hid, Wid gre the fused feature maps.

3. upsampling the fused features. In this step, the fused
feature maps are upsampled using bilinear interpo-
lation and convolutional layers with a kernel size 3 x
3 to obtain the next level of upsampled feature maps
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residuall feature processing module

Y

———> Ffiee

FIGURE 2 The architecture of the proposed RFB. The RFB consists of a residual feature processing module and a feature fusion module,
which is utilized to aggregate the upsampled Transformer feature maps (F7), the CNN feature maps (F¢) and the upsampled feature maps (Fy).
In residual feature processing module, the residual blocks are utilized to process Fr, F¢, and F, to obtain F’T and Fé;' Then the fused feature

maps (Fy,se) are obtained by using a convolution layer to aggregate F/T, F’C, and F in feature fusion module. CNN, convolutional neural network;

RFB, residual fusion block.

FU = RNxdI2,2xH]d,2xW/d.

Fu = U(Fruse) (13)

U(-) denotes the upsampling operation.

In the final layer of the decoder, the upsampled fea-
ture maps Fy are fused with the shallow feature maps
F, to generate feature maps X, € RV - W, the output
features of the Transformer-CNN branch.

Reconstruction module The hybrid feature maps of
both the CNN branch and Transformer-CNN branch are
aggregated to obtain the denoised MR image % through
a reconstruction module implemented using a 1 x 1
convolution layer.

X = R(Xc, Xic) (14)

2.3 | Pretraining strategy

The availability of paired noisy and noise-free MR
images is limited, which restricts the denoising perfor-
mance of DL methods. Here, to further improve the
denoising performance of the proposed network, we
introduce a pretraining strategy based on the self-
supervised denoising. The self-supervised loss can
generally be expressed as:

min Ex If () - x1” (15)

x denotes the noisy image, fy denotes the denoising
network. Based on the idea of J-invariance?* when f,
is J-invariant, the self-supervised loss function can be

written as:
2 12 2
EX”f@(X)_X” = Ex,y”fe(x)_xll +Ex,y||X_X” (16)

X = Eyy(x), y is the noise-free image. If the noise is
zero mean, minimizing a self-supervised loss across
J-invariant functions is equivalent to minimizing a super-
vised loss.

However, it is important to note that the Rician noise
present in MR images is not zero mean. This means
that noise-free images cannot be directly recovered from
noisy MR images using the self-supervised denoising
method. The mean of the MR image is

0 2 2

_ X X“+y yX
X = X—exp| - Iol — )dx 17
/0 o p( 202 >°<crz> a7

o denotes standard deviation of Gaussian distribution
and [y denotes the zeroth order Modified Bessel func-
tion. Although x is different from noise-free image y, the
denoised image X has no random fluctuations and can
be uniquely determined by y and ¢.3° In other words, %
can be regarded as a biased denoising result that pro-
vides some structural information of the noise-free MR
images.

Consequently, to further exploit the information of
noisy images and improve the network denoising per-
formance, we propose a pretraining strategy based on
the self-supervised denoising. This strategy aims to
provide suitable initial parameters and a certain level
of denoising ability for supervised training. As shown
in Figure 3, the proposed pretraining strategy includes
three steps:

1. randomly masking pixels in noisy MR images;
we randomly mask some pixels in noisy MR images.
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Noisy Image
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Noisy Image
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Parameter-Transfer
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Target

Loss
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< >

FIGURE 3 The workflow of the pretraining strategy based on self-supervised denoising. The training strategy includes three steps: (1)
randomly masking pixels of noisy MR images. This step involves using a randomly generated mask m to create paired noisy MR images,
forming the masked dataset; (2) pretraining HTC-net with the masked dataset. The input of HTC-net is the image masked by m and the target is
the image masked by 1 - m; (3) transferring the parameters in supervised learning. Transferring the pre-trained parameters to supervised
training with paired noisy and noise-free MR images. HTC-net, hybrid transformer-CNN network; MR, magnetic resonance.

The process of random masking follows a Bernoulli
distribution with probability p. Then the masked and
unmasked pixels form paired with noisy MR images
in the masked dataset. In this work, p is set to 0.5.

2. pretraining HTC-net with the masked dataset; pre-
training is performed with the constructed masked
dataset. Here, the HTC-net predicts the masked
pixels by utilizing the unmasked pixels in the noisy
MR image, which makes the network J-invariant.
Subsequently, the pretrained network gains the
ability of extracting image features and denoising.
This pretraining process provides appropriate initial
parameters for the subsequent supervised training
for denoising.

3. transferring the network parameters in super-
vised learning; the parameters obtained from pre-
training procedure are utilized to initialize the super-
vised training that aims to refine the denoising
capability using paired noisy and noise-free MR
images.

24 | Loss function

The loss function consists of self-supervised loss for

pretraining and supervised loss in supervised training.
The self-supervised loss function can be stated as:

minl|(1 = m)lfs(m-x) (1 =m) Al (18)

mis a generated mask.

The supervised loss function is calculated as the
absolute differences between denoised image f3(x) and
ground truth noise-free image y:

min [If(x) = y1ll (19)

2.5 | Datasets

To validate the performance of our method, we per-
formed experiments on functional and structural MRI
datasets.
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Functional MRI dataset: pulmonary HP '29Xe MRI
allows visualization of lung ventilation function, which is
valuable for clinical diagnosis of pulmonary diseases.
In this study, pulmonary HP '29Xe ventilation images
were obtained from 85 subjects. All experiments were
conducted on a 1.5 T whole-body MRI scanner (Avanto,
Siemens Medical Solutions) and were approved by
the local Institutional Review Board. Based on the Rb-
129X e spin-exchange optical pumping (Rb-129Xe SEOP)
method, enriched '2°Xe gas was polarized using a com-
mercial xenon polarizer (verImagin Healthcare, Wuhan).
After inhaling the gas mixture from functional residual
capacity, subjects held their breath for data acquisition.

The MRI parameters for HP '29Xe imaging were:
matrix size = 96 X 84, repetition time/echo time
(TR/TE) = 4.2/1.9 ms, field of view = 384 x 336 mm?,
slice thickness = 8 mm, bandwidth = 38.4 kHz, num-
ber of slices = 24, 3D bSSFP sequence, flip angle
(FA) = 10°,scan time = 8.4 s.

We selected images with signal-to-noise ratios
(SNRs) greater than 15 from the acquired HP '29Xe
MRI data, and finally obtained 1059 HP 2°Xe images
for experiments.®' These images were padded to 96 x
96. From this dataset, we randomly chose 847 images
for training and reserved 212 images for testing. Train-
ing images were augmented with horizontal flips and the
90°, 180°, and 270° rotations. When the SNRs are less
than 8, HP 2°Xe images require reacquisition to ensure
sufficient image quality>? Therefore, Rician noise was
added to these images to obtain noisy HP '2°Xe images
with SNRs ranging from 8 to 15 and from 5 to 8.

Structural MRI dataset: the structural MR images
used in this work were from the public IXI dataset
(http://brain-development.org/ixidataset/). The  IXI
dataset includes T1, T2, and proton density (PD)-
weighted images from three different hospitals in
London. Hammersmith dataset is a subset of IXI
dataset, and the data was acquired using a Philips 3T
system. We chose the T1-weighted images among them
and the T1-weighted MRI parameters in Hammersmith
dataset were TR/TE = 9.6/4.6 ms, number of phase
encoding steps = 208, reconstruction diameter = 240.0,
FA = 8°.

We removed the anterior and posterior slices from
each MRI volume from the IXI dataset, resulting in 5000
2D images. Then we randomly selected 4000 images
from them as the training set and 1000 images as the
test set. The size of each image is 256 x 256. To main-
tain consistency with HP '2°Xe MRI, we add Rician noise
into these images to obtain noisy MR images with SNRs
ranging from 8 to 15 and from 5 to 8.

Under-sampled MRI dataset: two-fold under-
sampled pulmonary HP '2Xe MR images were
acquired as the real noisy MR images by using a
variable density Cartesian sampling pattern in a phase-
encoding direction. The matrix size of each image is 96
%X 84, and a total of 620 under-sampled images from 85

subjects were obtained for testing. These images were
also padded to 96 x 96 in testing process.

2.6 | Implementation details

Our network was implemented using PyTorch frame-
work. Training and testing were performed on a worksta-
tion with an NVIDIA GTX 3090 of 24 GB memory and
an Intel Xeon(R) W-2245 CPU. AdamW optimizer with
B4 of 0.9 and B, of 0.999 was adopted.®® In the self-
supervised pretraining and supervised training phase,
the learning rates were set to 5e-4 and 1e-4, respec-
tively, and decayed by half every 50 epochs. The batch
size was set to eight and the training was stopped
after 60 epochs. To demonstrate the advantages of
the proposed network architecture, we also conducted
supervised training on the network without pretraining,
and the training was stopped after 100 epochs.

2.7 | Performance evaluation

To validate the effectiveness of the HTC-net with
pretraining (called P-HTC-net), it was compared with
traditional methods [NLM,> UNLM®] and DL methods
[DnCNN,'® wider denoising neural network (WDNN),'®
image restoration model based on Swin Transformer
(SwinlR),'® HTC-net]. Quantitative denoising results
were evaluated based on peak signal-to-noise ratio
(PSNR) and structural similarity index measure
(SSIM) 34:35;

/2
PSNR = 10 - logo (Mmng> (20)

(zﬂx,uy + C1)(2ny +¢)
(K2 + 12 +¢q) (a2 +02+Cy)

SSIM = (21)

x and y represent the denoised MR image and the
noise-free image, respectively, MSE denotes the MSE
between x and y, u, and u, are the mean of x and y, o,
and o, are the standard deviations of x and y, oy, is the
covariance between x and y, ¢4 and ¢, are constants.
Ventilation defect percentage (VDP) is an important
quantitative metric for assessing pulmonary function in
lung MRI, which is defined as the ratio of the ventilation
defect volume to the thoracic volume.! For pulmonary
HP 29Xe ventilation images, accurate segmentation of
ventilation defect regions (lung lesions) is essential for
calculating VDP*® Thus, we undertook a comparison
of the segmentation of ventilation defect regions in
denoised lung images to further evaluate the accu-
racy of the denoising results. White matter atrophy
serves as a clinical marker for a diverse range of
neurological disorders. Accurate segmentation of
white matter is necessary to estimate the white matter
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FIGURE 4 The denoising results of two representative subjects on the pulmonary HP 129Xe MRI dataset (SNRs > 8): subject 1 (top two
rows) and subject 2 (bottom two rows). The second and fourth rows show the zoomed-in details.

volume3” Therefore, we compared the segmentation of
white and gray matter in denoised brain images from
the IXI dataset to further evaluate the accuracy of the
denoising results. Dice score was used to evaluate the
quantitative results of segmentation:

2|1Sn G|

Dice (S, G) = m

(22)

S represents the segmentation result and G denotes
the ground truth.

For under-sampled experiments, we first evaluated
the denoising performance using SNR. Then, we eval-
uated performance through experts scoring due to the
lack of ground truth (clean MR images). Two clinical
experts with more than 5 years of experience in lung
MRI evaluate the quality of these denoised images
based on the overall image quality, sharpness, and sub-
jective SNR, with scores ranging from 1 to 538 A higher
score means the better image quality.

3 | RESULTS

3.1 | Results on the pulmonary HP 2°Xe
MRI dataset

Figures 4 and 5 show the representative denoising
results of different denoising methods at varying SNR
levels. As shown in these figures, traditional denoising
methods often result in over-smoothed images, lack-
ing in fine details. Conversely, the DL methods perform
better in preserving details. Among them, our method

outperforms others in recovering low signal areas of
HP 12°Xe images while more efficiently reducing back-
ground noise. At low SNR levels, our method is still able
to provide clear airways and enhanced edge sharpness.
In summary, the proposed method outperforms others
by yielding visually superior results with more details.

Table 1 presents quantitative results comparing var-
ious denoising methods on pulmonary HP '29Xe MRI
dataset at different SNR levels. It is evident that all
denoising methods contribute to enhancing image qual-
ity, with our method demonstrating the highest PSNR
and SSIM values at each SNR level (PSNR of 30.022
and 27.888 dB, SSIM of 0.869 and 0.822). Notably, DL
methods consistently outperform traditional methods
in denoising metrics. Among the compared methods,
SwinIR exhibits suboptimal denoising performance,
followed by WDNN and DnCNN. In comparison with
SwinlR, our HTC-net, even without pretraining, achieves
an increase of 0.239 and 0.22 dB in PSNR values within
SNR ranges of 8 to 15 and 5 to 8, respectively. With pre-
training,the PSNR values of our network further improve
by 0.015 and 0.084 dB, respectively. A paired t-test is
used to statistically compare the differences between
our method and other methods. The corresponding
p-values are presented in Table S1, indicating that our
method differs significantly from others (p < 0.05).

In Figure 6, segmentation results for ventilation defect
regions (lesions) in denoised images are illustrated.
Notably, images denoised with NLM and UNLM exhibit
challenges in accurately segmenting small ventilation
defectregions,indicating limitations in detail recovery for
HP 2°Xe image. In contrast, the segmentation results
based on our method are closest to the ground truth
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FIGURE 5 The denoising results of two representative subjects on the pulmonary HP 29Xe MRI dataset (SNRs < 8): subject 1 (top two
rows) and subject 2 (bottom two rows). The second and fourth rows show the zoomed-in details. MRI, magnetic resonance imaging; SNRs,
signal-to-noise ratios.

TABLE 1 Quantitative results of different denoising methods on the pulmonary HP 29Xe MRI dataset in terms of PSNR and SSIM
(mean + standard deviation).

SNRs = (8, 15) SNRs = (5, 8)
Method PSNR SSIM PSNR SSIM

Noisy 17.233 + 3.120* 0.481 + 0.128" 10.884 + 1.703** 0.225 + 0.062**
NLM 20.241 + 3.003* 0.498 + 0.085"* 14.352 + 1.182* 0.324 + 0.053**
UNLM 23.491 + 2,898 0.390 + 0.140** 22.285 + 2.476™ 0.393 + 0.153**
DNCNN 29.526 + 2.284* 0.859 + 0.053** 27.480 + 1.836™ 0.810 + 0.061**
WDNN 29.425 + 2158 0.856 + 0.051** 27.525 + 1.846" 0.809 + 0.063**
SwinIR 20.768 + 2.348™ 0.862 + 0.055™* 27.584 + 1.885™ 0.812 + 0.064**
HTC-net 30.007 + 2.429* 0.869 + 0.057 27.804 + 1.925" 0.820 + 0.065"*
P-HTC-net 30.022 + 2.428 0.869 + 0.057 27.888 + 1.925 0.822 + 0.064

Note: The best results are shown in bold. * and ** denote p-value < 0.05 and p-value < 0.001, respectively.
Abbreviations: DnCNN, denoising convolutional neural network; HTC-net, hybrid transformer-CNN network; NLM, nonlocal mean; PSNR, peak signal-to-noise ratio;
SNRs, signal-to-noise ratios; SSIM, structural similarity index measure; UNLM, unbiased NLM.
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FIGURE 6 The segmentation results on the pulmonary HP 29Xe MRI dataset. The green color denotes the healthy region, and the red
color denotes the lesions. The top row is segmentation results of denoised pulmonary HP '29Xe MR images with SNRs > 8, and the bottom row
is segmentation results of denoised pulmonary HP 122Xe MR images with SNRs < 8. HP. hyperpolarized; MR, magnetic resonance; MRI,
magnetic resonance imaging; SNRs, signal-to-noise ratios.
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FIGURE 7 The denoising results from two representative subjects on the IXI dataset (SNRs > 8): subject 1 (top two rows) and subject 2
(bottom two rows). The second and fourth rows show the zoomed-in details. SNRs, signal-to-noise ratios.

TABLE 2 Dice scores obtained by various denoising methods on
the pulmonary HP '2°Xe MRI dataset (mean =+ standard deviation).

Method SNRs = (8, 15) SNRs = (5, 8)
Noisy 0.680 + 0.057** 0.567 + 0.058**
NLM 0.748 + 0.070** 0.671 + 0.080**
UNLM 0.744 + 0.069** 0.687 + 0.071**
DnCNN 0.769 + 0.079** 0.710 + 0.081**
WDNN 0.761 + 0.086** 0.718 + 0.073**
SwinIR 0.769 + 0.078** 0.721 + 0.074**
HTC-net 0.775 + 0.080* 0.734 + 0.072*
P-HTC-net 0.784 + 0.079 0.739 + 0.075

DnCNN

Note: The best results are shown in bold. * and ** denote p-value < 0.05 and
p-value < 0.001, respectively.

Abbreviations: DnCNN, denoising convolutional neural network; HTC-net, hybrid
transformer-CNN network; NLM, nonlocal mean; SNRs, signal-to-noise ratios;
UNLM, unbiased NLM.

and effectively recovers more small ventilation defect
regions compared to other methods. Table 2 lists the
Dice scores obtained by various denoising methods on
the pulmonary HP '29Xe MRI dataset. The proposed
method obtains the highest Dice scores (0.784 and
0.739), which outperforms other DL methods by 2%—
4%. The corresponding p-values are presented in Table
S1, indicating that our method differs significantly from
others (p < 0.05). We also compare the correlation
between the VDP obtained by various methods and
the VDP of noise-free images, as shown in Figures S1
and S2.

3.2 | Results on the IXI dataset

Figures 7 and 8 present the representative results of
denoising methods on the IXI dataset with SNRs rang-
ing from 8 to 15 and 5 to 8. It can be observed
that our method not only recovers sulcus and gyrus

WDNN SwinIR HTC-net P-HTC-net

in brain MR images, but also provides a clear bound-
ary between gray matter and white matter. Moreover,
our method provides clearer details in the zoomed-in
images of the cerebellum. It is evident that our method
is able to restore more fine information, preserving
clear shapes, and edges. Comparatively, other denois-
ing methods tend to lose details or introduce false
features.

Table 3 presents the quantitative results of various
denoising methods on the IXI dataset. DL methods
obtain better denoising performance than traditional
methods. In comparison to other methods, our method
obtains the highest quantitative metrics (PSNR of
35.507 and 32.275 dB, SSIM of 0.973 and 0.948).
Specifically, in the dataset with SNRs ranging from 8
to 15 and 5 to 8, the PSNR values that our method
achieves are 0.3 and 0.587 dB higher than SwinIR
(the method with the highest PSNR among others)
respectively. Even without self-supervised pretraining,
the proposed network still outperforms other methods
in terms of PSNR and SSIM, verifying the superiority
of its structure. Table S1 shows that our method differs
significantly from others (p < 0.05).

Figure 9 displays the segmentation results of white
and gray matter in denoised brain images from the
IXI dataset. Notably, the segmentation results of noisy
images fail to provide clear boundaries between white
and gray matter, yielding the worst segmentation
results. However, all the denoising methods improve
the segmentation results. Among them, the segmen-
tation results of the proposed denoising method are
closest to ground truth. Table 4 presents the Dice
scores obtained by various denoising methods on the
IXI dataset. The proposed method obtains the high-
est Dice scores (0.895 and 0.853), outperforming other
DL methods by 1%—6%. Statistical analysis indicates
that our method differs significantly from other methods
(p < 0.05).
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FIGURE 8 The denoising results from two representative subjects on the IXI dataset (SNRs < 8): subject 1 (top two rows) and subject 2
(bottom two rows). The second and fourth rows show the zoomed-in details. SNRs, signal-to-noise ratios.

TABLE 3 Quantitative results of different denoising methods on the IX| dataset in terms of PSNR and SSIM (mean + standard deviation).

SNRs = (8, 15) SNRs = (5, 8)
Method PSNR SsIM PSNR SsIM
Noisy 18.585 + 1.099** 0.465 + 0.056** 12.278 + 0.997** 0.244 + 0.047*
NLM 21.358 + 1.133* 0.510 & 0.047** 15.574 + 1.050"* 0.369 + 0.043"
UNLM 32.065 + 1.172** 0.930 + 0.022** 27.855 + 1.151* 0.832 + 0.048"
DNCNN 34.813 + 1.231* 0.967 + 0.007** 31.348 + 1.182* 0.932 + 0.012*
WDNN 34.961 + 1.233* 0.968 + 0.007** 31.409 + 1.162** 0.933 + 0.012*
SwiniR 35.207 + 1.245" 0.970 + 0.006** 31.688 + 1.210* 0.939 + 0.011*
HTC-net 35.392 + 1.238* 0.972 + 0.006** 32.105 + 1.203* 0.947 + 0.010*
P-HTC-net 35.507 + 1.243 0.973 + 0.005 32.275 + 1.222 0.948 + 0.010

Note: The best results are shown in bold. * and ** denote p-value < 0.05 and p-value < 0.001, respectively.
Abbreviations: DnCNN, denoising convolutional neural network; HTC-net, hybrid transformer-CNN network; NLM, nonlocal mean; PSNR, peak signal-to-noise ratio;
SNRs, signal-to-noise ratios; SSIM, structural similarity index measure; UNLM, unbiased NLM.
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FIGURE 9 The segmentation results on the IX| dataset. The white color denotes the white matter, and the gray color denotes the gray
matter. The top row is segmentation results of denoised brain images with SNRs > 8, and the bottom row is segmentation results of denoised
brain MR images with SNRs < 8. MR, magnetic resonance; SNRs, signal-to-noise ratios.

are two-fold under-sampled, evaluated using SNR and
experts scoring. The DL methods are trained on pul-
monary HP '29Xe MRI dataset with synthetic noise. The

3.3 | Results on the real noisy MR
images

We present denoised results of various methods on

620 real noisy pulmonary HP 2°Xe MR images that Figure 10 shows that our method preserves more

results are shown in Figures 10 and S3, and Table 5.
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FIGURE 10 The denoising results on the pulmonary under-sampled MRI data. MRI, magnetic resonance imaging.

TABLE 4 Dice scores obtained by various denoising methods on
the IXI dataset (mean + standard deviation).

Method SNRs = (8, 15) SNRs = (5, 8)

Noisy 0.643 + 0.060** 0.515 + 0.034*
NLM 0.805 + 0.043** 0.711 + 0.040*
UNLM 0.808 + 0.042** 0.714 + 0.037*
DnCNN 0.872 + 0.025** 0.805 + 0.028**
WDNN 0.878 + 0.025** 0.807 + 0.030**
SwinIR 0.886 + 0.024* 0.824 + 0.029*
HTC-net 0.894 + 0.023** 0.848 + 0.029*
P-HTC-net 0.895 + 0.023 0.853 + 0.026

Note: The best results are shown in bold. * and ** denote p-value < 0.05 and
p-value < 0.001, respectively.

Abbreviations: DnCNN, denoising convolutional neural network; HTC-net, hybrid
transformer-CNN network; NLM, nonlocal mean; SNRs, signal-to-noise ratios;
UNLM, unbiased NLM.

image details, providing clearer ventilation defects, and
sharper denoised results. In quantitative comparisons,
our method outperforms the state-of-the-art method by
19.4% in SNR (104.89 vs. 87.86), demonstrating bet-
ter generalization ability. Additionally, as demonstrated
in expert evaluations, Figure S3 shows that our method
achieves the highest scores in terms of overall image
quality, sharpness, and SNR.

3.4 | Ablation experiments
Ablation experiments are conducted on the pulmonary

HP '29Xe MRI dataset and the IXI dataset. We eval-
uate various network configurations to evaluate their

performance. These include: the CNN branch alone
(u), the Transformer-CNN branch without the Trans-
former encoder (d), and several combinations of them.
The combinations are the CNN and Transformer-CNN
branches without the Transformer encoder (u + d),
adding the Transformer encoder to this mix (u + d +
t), further incorporating the RFB (u + d + t + f), and
the complete method which includes self-supervised
pretraining (u + d + t + f + s). Figure 11 and Figure S5
present subjective results of various network configura-
tions on the pulmonary HP '2°Xe MRI dataset and the
IXI dataset. Among these, the (u + d +t + f + s) yields
the clearest details, closely matching the noise-free
images. The quantitative results are summarized in
Tables 6 and 7. The (u + d + t + f + s) achieves the
highest metrics (for the HP 29Xe MRI dataset: PSNR of
30.022 dB and 27.888 dB, SSIM of 0.869 and 0.822; for
the IXI dataset: PSNR of 35.507 and 32.275 dB, SSIM
of 0.973 and 0.948). Table S2 presents the p-values
for various network variants compared to our method,
demonstrating statistically significant results.

To further evaluate the effectiveness of pretrain-
ing strategy, different numbers of noisy MR images are
used during the pretraining stage. For the IX| dataset, we
augment the self-supervised pretraining by incorporat-
ing an additional 4000 noisy MR images. These images
are obtained by adding Rician noise to the T1-weighted
images from the IX| dataset. For the pulmonary HP
129Xe MRI dataset, we selected additional 753 HP
129Xe images with SNRs less than 15 to augment the
self-supervised pretraining. Table 8 presents the quan-
titative results on the pulmonary HP '29Xe MRI dataset
and the IXI dataset, respectively. As the number of noisy
MR images increases, the denoising metrics obtained
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TABLE 5 Quantitative results of various denoising methods on the pulmonary under-sampled MRI data (mean + standard deviation).

Noisy NLM UNLM DnCNN WDNN SwinIR P-HTC-net
SNR 18.50 + 3.04 70.42 +17.05 64.83 + 16.27 17.83 + 6.02 19.10 + 8.29 87.86 + 17.47 104.89 + 39.78
Score 1.43 +0.15 1.78 +0.38 2.57 +0.50 2.35+0.23 223 +0.13 3.45+0.18 3.95+0.13

Note: The best results are shown in bold. Score is obtained by averaging the overall image quality, sharpness, and SNR scores given by experts.
Abbreviations: DnCNN, denoising convolutional neural network; NLM, nonlocal mean; SNRs, signal-to-noise ratios; UNLM, unbiased NLM.

WHd)  (w+(d)
HO)+H()  HO)HDH()

Noise-free Noisy (u) (d) (w+(d) ()+H(d)+(t)

SNRs > 8

SNRs <8

i

[ 2
3
S 2 : -
: >
FIGURE 11 The denoising results of various network configurations on the pulmonary HP 12°Xe MRI dataset: (u) denoising with only the

CNN branch, (d) denoising with only the Transformer-CNN branch without transformer encoder, (t) the transformer encoder, (f) the residual
fusion block, (s) the self-supervised pretraining. HP, hyperpolarized; CNN, convolutional neural network; MRI, magnetic resonance imaging.

TABLE 6 Ablation studies on various network configurations on the pulmonary HP '2°Xe MRI dataset (mean + standard deviation): (u)
denoising with only the CNN branch, (d) denoising with only the Transformer-CNN branch without Transformer encoder, () the Transformer
encoder, (f) the RFB, (s) the self-supervised pretraining.

SNRs = (8, 15) SNRs = (5, 8)
Method PSNR SSIM PSNR SSIM
(u) 29.513 + 2.285* 0.856 + 0.053** 27.527 + 1.897* 0.811 + 0.065*
(d) 29.632 + 2.322* 0.863 + 0.057** 27.533 + 1.874* 0.813 + 0.065**
(u)+(d) 29.728 + 2.349** 0.863 + 0.056** 27.658 + 1.905** 0.816 + 0.065**
(U)+(d)+(t) 29.949 + 2.391* 0.867 + 0.057** 27.764 + 1.906** 0.819 + 0.064**
(U)+(d)+(H)+() 30.007 + 2.429* 0.869 + 0.057 27.804 + 1.925* 0.820 + 0.065*
(U)+(d)+(t)+(P)+(s) 30.022 + 2.428 0.869 + 0.057 27.888 + 1.925 0.822 + 0.064

Note: The best results are shown in bold. * and ** denote p-value < 0.05 and p-value < 0.001, respectively.
Abbreviations: PSNR, peak signal-to-noise ratio; SSIM, structural similarity index measure.

by HTC-net improve by 0.024-0.243 dB, indicatingthat 4 | DISCUSSION

self-supervised pretraining is beneficial for enhancing

denoising performance. Table S3 shows the p-values In this work, we propose an HTC-net for MR image
for the metrics of networks trained with different denoising, which leverages the strengths of Trans-
methods. former and CNN architectures to enhance the denoising
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TABLE 7 Ablation studies on various network configurations on the IXI dataset (mean + standard deviation): (u) denoising with only the
CNN branch, (d) denoising with only the Transformer-CNN branch without Transformer encoder, (t) the Transformer encoder, (f) the RFB, (s) the

self-supervised pretraining.

SNRs = (8, 15) SNRs = (5, 8)
Method PSNR SSIM PSNR SSIM
(u) 34.709 + 1.221** 0.967 + 0.007** 31.216 + 1.187** 0.930 + 0.013**
(d) 34.760 + 1.241* 0.970 + 0.006™** 31.631 £1.177* 0.940 + 0.011**
(u)+(d) 35.175 + 1.236* 0.971 + 0.006** 31.767 £ 1.214* 0.941 + 0.011**
(u)+(d)+(t) 35.232 + 1.235* 0.972 + 0.006** 31.980 + 1.217* 0.945 + 0.010**
(u)+(d)+(t)+(P) 35.392 + 1.238** 0.972 + 0.006** 32.105 + 1.203** 0.947 + 0.010**
(u)+(d)+(t)+(F)+(s) 35.507 +1.243 0.973 + 0.005 32.275 + 1.222 0.948 + 0.010
Note: The best results are shown in bold. * and ** denote p-value < 0.05 and p-value < 0.001, respectively.
Abbreviations: PSNR, peak signal-to-noise ratio; SNRs, signal-to-noise ratios; SSIM, structural similarity index measure.
TABLE 8 Ablation studies on pretraining strategy on the pulmonary HP '2°Xe MRI dataset and the IXI dataset.
SNRs = (8, 15) SNRs = (5, 8)

Dataset Method PSNR SSIM PSNR SSIM
HP 129%e w/o Pretraining 30.007 + 2.429* 0.869 + 0.057* 27.804 + 1.925** 0.820 + 0.065**
MRI dataset Pretraining (847 samples) 30.022 + 2.428 0.869 + 0.057* 27.888 + 1.925 0.822 + 0.064

Pretraining (1600 samples) 30.031 + 2.434 0.869 + 0.057 27.894 +1.929 0.822 + 0.064
IXI dataset w/o Pretraining 35.392 + 1.238** 0.972 + 0.006** 32.105 + 1.203** 0.947 +0.010™*

Pretraining (4000 samples)

Pretraining (8000 samples)

35.507 + 1.243™
35.537 + 1.251

0.973 + 0.005**
0.973 + 0.005

32.275 + 1.222**
32.348 + 1.242

0.948 + 0.010™
0.949 + 0.010

Note: The best results are shown in bold. * and ** denote p-value < 0.05 and p-value < 0.001, respectively.
Abbreviations: PSNR, peak signal-to-noise ratio; SNRs, signal-to-noise ratios; SSIM, structural similarity index measure.

performance. Additionally, we introduce RFB to effec-
tively aggregate hybrid features at different resolutions.
In this way, HTC-net could exploit the comprehen-
sive features to predict accurate noise-free MR
images. Moreover, a pretraining strategy based on
the self-supervised denoising is utilized to reduce
the requirements of paired noisy and noise-free MR
images while further improving the performance of the
HTC-net. We evaluate the proposed method on the
pulmonary HP 2°Xe MRI dataset and the IX| dataset,
demonstrating its superiority over other methods.

Our results demonstrate that long-range information
contributes to denoising. In our experiments, it can
be observed that leveraging the hybrid network of
Transformer and CNN vyields superior results compared
to classical DL denoising methods using CNN as the
basic framework. Specifically, the proposed method
outperforms DnCNN by 0.408-0.972 dB in PSNR.
This improvement can be attributed to the inherent
limitation of CNN in capturing long-range information.
Incorporating long-range information aids in minimizing
the introduction of false features and maintaining the
continuity of anatomical structures, thereby leading to
more accurate denoising results (see Figures 4 and 5
and Figure S4). For instance, excellent image denoising
methods such as NLM and BM3D are based on the
principle of global self-similarity, utilizing the long-range

information of the image to improve image denoising
performance®? In our experimental comparisons, it can
be observed slightly inferior denoising results on the
pulmonary HP '29Xe MRI dataset compared to the IXI
dataset. Specifically, our method outperforms DnCNN
by 0.408-0.496 dB in PSNR on the pulmonary HP 2°Xe
MRI dataset, while achieving a higher improvement of
0.694-0.927 dB on the IXI dataset. This disparity can
be attributed to the superior image quality and higher
spatial resolution of the IXI dataset, which allows for
better utilization of long-range information and con-
sequently leads to enhanced denoising performance.
In addition, we visualize the shallow and deep feature
maps of HTC-net with and without Transformer blocks.
It can be noted that HTC-net containing the Transformer
blocks provide smoother feature maps and less artifact
generation compared to the HTC-net without Trans-
former blocks (Figure S7). Attention score maps further
demonstrate the proposed method effectively leverages
long-range information (Figure S8).2°

After capturing long-range information, effectively
integrating local features can further enhance perfor-
mance. The proposed method demonstrates superior
denoising performance compared to SwinIR, as evi-
denced by higher PSNR and SSIM. SwinIR alternates
between convolution and Swin Transformer on a single
path, which allows the network to capture long-range
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information.* However, the serial combination of con-
volution and Swin Transformer may limit the effective
aggregation of local and global representations*' In
our method, the CNN encoder and Transformer encoder
work in parallel to extract image features and then effec-
tively aggregate them at different resolutions through
the RFBs. This strategy leads to enhanced denoising
performance, resulting in a PSNR increase of 0.185-
0 .417 dB. K-space fidelity is also important to keep
the image content consistent after processing, ensuring
that no artifacts are introduced. The proposed method
keeps image content consistency by incorporating long-
range information and a tailored loss function. This
implicitly reduces errors in the k-space data, given that
k-space and image-domain data are interconnected via
the Fourier transform. Furthermore, explicitly leveraging
K-space information is a promising research direction.

Our study also indicates that pretraining is an effective
way to improve denoising performance. In natural image
restoration, Chen et al. proposed a pretrained Trans-
former and achieved the state-of-the-art performance.2°
However, this method relies on a large dataset (over
1.1 M images), which is difficult to obtain such a
large dataset in MRI. In this work, we propose a pre-
training strategy based on self-supervised denoising,
which could reduce the requirements of paired noisy
and noise-free MR images. Although the self-supervised
denoising could not directly recover noise-free MR
images from noisy ones due to the non-zero mean,
it tends to converge towards outputs without random
fluctuations2* Therefore, employing self-supervised
denoising as pretraining is able to equip the network
with denoising capability and facilitate the extraction of
MR image features, which is beneficial for subsequent
supervised training.*> Furthermore, increasing the num-
ber of noisy images during self-supervised pretraining
yields a PSNR increase of 0.024—0 .243 dB. This indi-
cates that by utilizing more noisy MR images during
pretraining can decrease the requirements of paired
noisy and noise-free images during supervised training,
which is particularly suitable for MR image denoising
(see Table S4 and Figure S6).

In this work, PSNR and SSIM are both global eval-
uation metrics, while segmentation involves region
of interest (ROI) evaluation. Our method exhibits an
effective enhancement in PSNR (0.254-0.927 dB),
albeit with comparatively modest improvement in SSIM
(0.003-0.016). Regarding ROI evaluation, our method’s
segmentation results closely resemble those of noise-
free images, indicating its capability to provide more
accurate quantitative parameters in MR images anal-
ysis. In addition, our method demonstrates greater
improvements compared to other methods when deal-
ing with lower image quality (at low noise levels: an
improvement of 0.254-0.694 dB in PSNR; at high
noise levels: an improvement of 0.304-0.927 dB in
PSNR). This means that our method is more com-

petitive in scenarios with high levels of noise. The
proposed method also shows potential advantages in
clinical applications. In tests on under-sampled images,
the proposed method demonstrates superior gener-
alization performance compared to other methods,
providing high-quality denoising results. Additionally,
the improvement of segmentation performance helps
to enhance the accuracy of MR image quantitative
analysis (Tables 2 and 4, Figures 6 and 9). Moreover, the
proposed method exhibits the highest VDP correlation
(R? = 0.98) with noise-free images, contributing to
improved diagnosis accuracy (Figures S1 and S2).

However, there are still limitations in this work. First,
deeper CNN encoder and Transformer encoder, along
with more levels of features aggregation between them,
have the potential to improve denoising performance.
However, this also increases the risk of overfitting, lead-
ing to decreased DL model generalization. Therefore,
further research are needed to explore the relation-
ship between performance and network structure
during practical applications. Second, the compar-
isons and evaluations in this study are conducted
on the pulmonary HP '29Xe MRI dataset and the IXI
dataset. In future, we will incorporate a wider variety
of data to evaluate the denoising performance of the
method.

5 | CONCLUSIONS

In this work, we propose a novel HTC-net and an effec-
tive pretraining strategy for MR image denoising. The
HTC-net could efficiently capture long-range informa-
tion and maintain locality by combining the strengths
of both Transformer and CNN. The pretraining strategy,
based on self-supervised denoising, further improves
the denoising performance and reduce the requirements
of paired MR images. Experimental results demonstrate
that our method preserves more edges and structures,
outperforming the state-of-the-art methods by 0.254—
0.927 dB in PSNR, which shows superior performance in
MR image denoising. The proposed method effectively
enhances the quality of MR images, which could help
improve the diagnosis accuracy in clinical.
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