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1. General information

'H, 13C and 'F NMR spectra were recorded on a Bruker 400 MHz or 500 MHz spectrometer.

Chemical shifts were presented in ppm and coupling constants (J) were in Hertz (Hz). '"H NMR spectra

were referenced to deuterated solvents, including CDCl3 (s, 7.26 ppm), acetone-ds (s, 2.05 ppm), CD3CN

(s, 1.94 ppm). *C NMR spectra were referenced to solvent carbons (1.32 ppm for CD3;CN, 29.84 ppm

for acetone-de). '°F NMR spectra were referenced to 2% perfluorobenzene (s, -164.90 ppm) in CD;CN.

The splitting patterns for "H NMR spectra were denoted as follows: s (singlet), d (doublet), t (triplet), q

(quartet), m (multiplet), b (broad), and combinations thereof. High-resolution mass spectra (HRMS) were

recorded on a Thermo Fisher Scientific Q Exactive Focus. The single-crystal X-ray diffraction data for

macrocycle 1 and [2]rotaxane Rx-1 were collected using Rigaku XtaLAB PRO MMOO7HF and Rigaku

XtaLAB P200. MALDI-ICR mass spectra were recorded on a 9.4 T SolariX FT-ICR-MS using the single

MS mode for positive ions with dithranol as a matrix.
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2. Synthesis and characterization of compounds
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Scheme S1. The synthesis of macrocycle 1, compound 4, and stoppers 5 and 6.

Crown ether 3 [1]: Dibenzo 24-crown-8 (0.50 g, 1.11 mmol), paraformaldehyde (0.30 g, 9.99 mmol),
and hydrobromic acid (33% water solution) were suspended in acetic acid (8.00 mL), the reaction was
stirred at 60 °C until all the solids were dissolved (about 1 day). The mixture was then left to stand without
stirring for another 2 days to allow the precipitation of a white product. The solid was collected by

filtration, washed consecutively with water, ethanol, and diethyl ether, and then air-dried. Crown ether 3
was obtained as a white solid (0.78 g, yield 85%), which was directly used in the next step without further
purification. '"H NMR (400 MHz, CDCl3) 8 6.82 (s, 4H, Ha), 4.59 (s, 8H, Hp), 4.15 (s, 8H, Hc), 3.91 (s,

8H, Hp), 3.80 (s, 8H, Hg).

Macrocycle 1: Crown ether 3 (1.22 g, 1.49 mmol) and potassium perfluoro-fers-butoxide (2.45 g, 8.94

mmol) were dissolved in a mixed solvent of N, N-dimethyl formaldehyde/tetrahydrofuran (DMF/THF,

1/1,20 mL), the reaction was stirred overnight at room temperature. After thin-lay chromatography (TLC)
showed that the reaction was completed, water (150 mL) was added to the reaction mixture which was

extracted with ethyl acetate (EtOAc, 60 mL x 3). The organic layers were collected, dried over anhydrous

sodium sulfate, and evaporated under reduced pressure. The residue was purified by flash column

chromatography on silica gel (petroleum ether (PE)/EtOAc = 2/1) to give macrocycle 1 as a white wax

(1.43 g, yield 67%). 'HNMR (500 MHz, CD:CN) & 7.01 (s, 4H, Ha), 5.11 (s, 8H, Hg), 4.13-4.15 (m, 8H,
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Hc), 3.79-3.81 (m, 8H, Hp), 3.67 (s, 8H, Hg). "°F NMR (471 MHz, CD;CN) § -71.32 (s, F4). *C NMR
(126 MHz, CD3CN) & 150.4 (Cr), 127.4 (Cg), 121.4 (q, J =289.8 Hz, C)), 116.5 (Ca), 80.4-81.1 (m, Cy),
71.7(Cg), 70.4 (Cc), 70.04 (Cp), 70.01 (Cg). HRMS (ESI") m/z: [M+Na]" calculated for C4sH36F36NaO12"

1463.1524; found 1463.1524.

Compound 4a [2]: To a solution of 4-hydroxybenzaldehyde (4.89 g, 40.00 mmol) in anhydrous ethanol

(120 mL) was added 4-hydroxybenzylamine (4.93 g, 40.00 mmol) and anhydrous magnesium sulfate

(5.78 g, 48.00 mmol) under an argon atmosphere. The reaction was refluxed for 24 h, then the solvent

was removed under reduced pressure and the residue was dissolved in a mixture of THF (60 mL) and

MeOH (60 mL). NaBH. (6.05 g, 160.00 mmol) was slowly added in 10 portions at room temperature.

The resulting mixture was stirred overnight and quenched with saturated ammonium chloride solution.

THF and MeOH were removed under reduced pressure, the agueous phase was extracted with ethyl ether

(60 mL x 3). The combined organic layers were dried over anhydrous sodium sulfate. After removal of

the solvent under reduced pressure, the residue was purified by flash column chromatography on silica

gel (PE/EtOAC = 1/9) to give compound 4a as a yellow wax (5.54 g, yield 60%). *H NMR (400 MHz,

acetone-ds) 6 7.17 (d, J = 8.6 Hz, 4H), 6.77 (d, J = 8.6 Hz, 4H), 3.64 (s, 4H).

Compound 4b [3]: To a solution of compound 4a (4.70 g, 20.50 mmol) in 100 mL of THF at 0 °C was

added triethylamine (3.71 mL, 26.60 mmol) under an argon atmosphere, and the resulting mixture was

stirred for 10 min. Then di-tert-butyl dicarbonate (6.71 g, 30.75 mmol) was slowly added to the mixture,

the reaction was stirred overnight at room temperature. After removal of the solvent under reduced

pressure, the residue was purified by flash column chromatography on silica gel (PE/EtOAc = 2/1) to

give compound 4b as a white solid (4.02 g, yield 60%). *H NMR (400 MHz, acetone-ds) & 8.38 (s, 2H),

7.10 (d, J = 7.3 Hz, 4H), 6.80-6.82 (M, 4H), 4.22-4.28 (m, 4H), 1.48 (s, 9H).
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Compound 4c [4]: To a suspension of sodium hydride (1.20 g, 30.00 mmol, 60% in mineral oil) and

compound 4b (3.30 g, 10.00 mmol) in 50 mL of DMF was added 3-bromopropyne (2.74 mL, 35.00

mmol) at 0 °C. The resulting mixture was stirred at room temperature overnight. The reaction was

quenched with 30 mL of saturated ammonium chloride solution and extracted with diethyl ether (30 mL

x 3). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, and

concentrated under reduced pressure. The residue was purified by flash column chromatography on silica

gel (PE/EtOAc = 10/1) to give compound 4c as a yellowish oil (4.03 g, yield 99%). *H NMR (400 MHz,

CDCl3) § 7.13-7.16 (m, 4H), 6.93 (d, J = 8.7 Hz, 4H), 4.69 (d, J = 2.4 Hz, 4H), 4.25-4.33 (m, 4H), 2.53

(t, J = 2.4 Hz, 2H), 1.50 (s, 9H).

Compound 4 [5]: At room temperature, trifluoroacetic acid (9.55 mL, 129.00 mmol) and anisole (1.06

mL, 9.75 mmol) were added to a solution of compound 4c (2.62 g, 6.46 mmol) in 50 mL of DCM, the

resulting mixture was stirred for 12 h. The reaction mixture was concentrated under reduced pressure to

give a residue as a white solid (2.68 g, yield 99%), which was directly used in the next step without

further purification. To a solution of the residue (0.54 g, 1.28 mmol) in 9 mL of methanol was added 18

mL of a saturated aqueous solution of NH4PFs and the resulting mixture was stirred for 5 h at room

temperature. The reaction mixture was extracted with 100 mL of dichloromethane and the organic layer

was collected. The organic layer was evaporated under reduced pressure to give the crude product, which

was purified by flash column chromatography on silica gel (DCM/MeOH = 10/1) to afford compound 4

as a yellowish wax (0.56 g, yield 97%). *H NMR (400 MHz, CDCl3) 6 7.27 (d, J = 8.6 Hz, 4H), 6.94 (d,

J = 8.7 Hz, 4H), 4.68 (d, J = 2.4 Hz, 4H), 3.74 (s, 4H), 2.52 (t, J = 2.4 Hz, 2H). 3C NMR (101 MHz,

acetone-ds) 8 159.4, 132.6, 124.8, 116.0, 79.4, 77.3, 56.2, 51.8. HRMS (ESI*) m/z: [M—PF¢]* calculated

for C2oH20NO2", 306.1489; found, 306.1485.
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Stopper 5 [6]: To a solution of 3,5-bis(trifluoromethyl)benzyl bromide (3.07 g, 10.00 mmol) in DMF

(30 mL) was added sodium azide (0.98 g, 15.00 mmol) under an argon atmosphere, the reaction was

stirred at 80 °C overnight. The reaction mixture was cooled to room temperature, diluted with water (60

mL), and extracted with EtOAc (80 mL x 3). The combined organic layers were washed with brine (100

mL x 3), dried with anhydrous sodium sulfate, and concentrated under reduced pressure to give stopper

5 as a yellowish oil (2.52 g, yield 94%). *H NMR (400 MHz, CDCls) & 7.86 (s, 1H), 7.79 (s, 2H), 4.56

(s, 2H).

Stopper 6 [7]: Stopper 6 was prepared from 3,5-di-tert-butylbenzyl bromide (10.00 g, 35.30 mmol) by

following the same procedure for the synthesis of stopper 6 as a clear oil (8.30 g, yield 96%).'H NMR

(400 MHz, CDCl3) § 7.42 (t, = 1.8 Hz, 1H), 7.16 (d, J = 1.8 Hz, 2H), 4.35 (s, 2H), 1.36 (s, 18H).
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Scheme S2. The synthesis of macrocycle 1, [2]rotaxanes Rx-1, Rx-2, and Rx-2', and axles A1 and A.

[2]Rotaxane Rx-1: A mixture of compound 4 (40.00 mg, 0.089 mmol) and macrocycle 1 (255.30 mg,

0.18 mmol) was stirred for 0.5 h in dry dichloromethane under an argon atmosphere at room temperature.

Then stopper 5 (71.50 mg, 0.27 mmol) and [Cu(CH3CN)4]PFs (66.10 mg, 0.18 mmol) were added and

the resulting mixture was stirred for an additional 2 days. The reaction was concentrated under vacuum

and the residue was purified by flash column chromatography on silica gel (dichloromethane: methanol

=50 : 1) to give [2]rotaxane Rx-1 as clear wax (97.70 mg, yield 45%). '"H NMR (500 MHz, CD3CN) §
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8.00 (s, 2H, H,), 7.90 (s, 6H, Hy.), 7.29 (d, J = 8.6 Hz, 4H, Hy), 6.86 (s, 4H, Ha), 6.74 (d, J = 8.6 Hz, 4H,

He), 5.71 (s, 4H, Hy), 5.11 (s, 8H, Hg), 4.95 (s, 4H, H,), 4.59-4.61 (m, 4H, H,), 4.08 (d, J= 2.5 Hz, 8H,

Hc), 3.79 (d, J= 3.5 Hz, 8H, Hp), 3.67 (s,8H, Hg). '°F NMR (471 MHz, CD;CN) § -64.00 (s, 12F, Fg), -

71.32 (s, 36F, Fa), -73.29 (d, J = 706.5 Hz, 6F, Fc). '3C NMR (126 MHz, CDsCN) & 159.8 (Cy), 148.9

(Cr), 144.6 (C1), 139.7 (Cx), 132.6 (q, J = 25.2 Hz, Cj), 131.9 (Cy), 129.8 (C.), 127.4 (Cq), 125.5 (Ca),

125.2 (Cy), 124.4 (q, J = 277.2 Hz, C)), 123.4 (C.), 121.4 (q, J = 289.8 Hz, Cy), 115.5 (Cx), 115.0 (C.),

80.4-81.1 (m, Cu), 71.8 (C), 71.0 (Cp), 70.0 (Cc), 69.2 (Cp), 62.3 (Cy), 53.2 (Cy), 52.8 (Cn). MALDI-

ICR-MS m/z: [M—PFs]" calculated for Csx:HecF4sN7O14", 2284.3896; found, 2284.3880.

[2]Rotaxane Rx-2: [2]Rotaxane Rx-2 was prepared from stopper 6 (65.20 mg, 0.27 mmol), compound

4 (40.00 mg, 0.089 mmol) and macrocycle 1 (255.30 mg, 0.18 mmol) by following the same procedure

for the synthesis of [2]rotaxane Rx-1 as a clear wax (136.70 mg, yield 65%). "H NMR (500 MHz, CD;CN)

§7.81 (s, 2H, Hy), 7.44 (t, J = 1.8 Hz, 2H, Hy), 7.27 (d, J = 8.7 Hz, 4H, H,), 7.20 (d, J = 1.8 Hz, 4H,

He), 6.87 (s, 4H, Ha), 6.74 (d, J = 8.7 Hz, 4H, He"), 5.50 (s, 4H, Hr), 5.14 (s, 8H, Hg), 4.93 (s, 4H, Hy),

4.57-4.60 (m, 4H, Hy), 4.08-4.09 (m, 8H, He), 3.77-3.78 (m, 8H, Hp), 3.65 (s, 8H, Hg), 1.27 (s, 36H,

Hi). °F NMR (471 MHz, CD;CN) § -71.27 (s, 36F, Fa), -73.36 (d, J = 706.5 Hz, 6F, Fc). '3C NMR (126

MHz, CD;CN) 8 159.8 (C), 152.6 (Cj), 148.9 (Ck), 144.2 (Cr), 136.0 (Cy), 131.9 (Ci), 127.5 (Co),

125.4 (Ce), 124.6 (Ca), 123.5 (Ca'), 123.5 (Cy), 121.4 (q, J=289.8 Hz, C1), 115.6 (Ca), 115.0 (Ce), 80.4-

81.1 (m, Cn), 71.8 (Cr), 71.0 (Cp), 70.0 (Cc), 69.2 (Cg), 62.2 (Cy'), 55.0 (Cr), 52.8 (Cy), 35.5 (Co), 31.5

(C). MALDI-ICR-MS m/z: [M—PF¢]* calculated for CosHi02F36N70147, 2236.6904; found, 2236.6874.

[2]Rotaxane Rx-2’: [2]Rotaxane Rx-2 (50 mg, 0.02 mmol) was dissolved in 100 mL of dichloromethane

and washed with NaOH solution (1 mol/L, 100 mL x 3). The resulting solution was dried with anhydrous

magnesium sulfate and concentrated under vacuum to give [2]rotaxane Rx-2’ (46.50 mg, yield 99%). 'H
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NMR (500 MHz, CDsCN) & 8.14 (s, 2H, Hy'), 7.41 (s, 2H, Hy), 7.18 (d, J = 1.6 Hz, 4H, Hy), 7.07 (d, J

= 7.9 Hz, 4H, He), 6.98 (s, 4H, Ha), 6.93 (d, J = 7.9 Hz, 4H, He), 5.41 (s, 4H, Hy), 5.33 (s, 4H, Hy),

5.12 (s, 8H, Hpg), 4.05-4.06 (m, 8H, Hc), 3.61 (s, 8H, Hp), 3.56 (s, 4H, Hy), 3.16 (s, 8H, Hg), 1.27 (s,

18H, Hix), 1.24 (s, 18H, Hy). '°F NMR (471 MHz, CD;CN) § -71.27 (s, 36F, F4). '*C NMR (126 MHz,

CD;CN) § 158.6 (Car), 152.5 (Cj), 150.0 (Cr), 145.8 (Cr), 136.2 (C), 129.8 (Ci), 127.0 (Cq), 125.3

(Ce), 124.6 (Ca), 123.6 (Ca), 123.5 (Cy), 121.4 (q, J = 293.0 Hz, Cy), 115.7 (C4), 115.0 (Ce'), 80.4-81.1

(m, Cn), 71.7 (Ck), 70.4 (Cp), 70.05 (Cc), 69.5 (Cp), 62.8 (Cy), 54.9 (Cr), 53.0 (Cr), 35.5 (Cy), 31.6

(Ci). MALDI-ICR-MS m/z: [N[JFHTr calculated for Co4H102F36N7014", 2236.6904; found, 2236.6902.

Axle A1: To a solution of compound 4 (150.0 mg, 0.33 mmol) in DCM (6 mL) was added stopper 5
(244.6 mg, 1.00 mmol) and [Cu(CH3CN)4]PFs (247.7 mg, 0.66 mmol), which was stirred under an
atmosphere of argon for 2 days at room temperature. The reaction mixture was diluted with 100 mL of
dichloromethane, washed with ethylenediaminetetraacetic acid disodium solution (3 x 50 mL), dried
over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified
by flash column chromatography on silica gel (DCM/MeOH = 30/1) to give axle A1 as a yellowish wax
(160.8 mg, yield 51%). '"H NMR (500 MHz, CDsCN) & 7.87 (s, 2H, Hy'), 7.44 (s, 2H, Hy'), 7.29 (d, J =
8.4 Hz, 4H, H), 7.20 (d, J = 1.3 Hz, 4H, Hy), 6.98 (d, J = 8.4 Hz, 4H, Hc), 5.50 (s, 4H, Hy), 5.14 (s,
4H, Hy'), 3.90 (s, 4H, Hy'), 1.27 (s, 36H, H;). 3C NMR (126 MHz, CD3CN) § 159.4, 152.6, 144.6, 136.1,
131.7, 128.5, 124.7, 123.5, 123.5, 115.8, 62.4, 55.0, 52.2, 35.5, 31.6. HRMS (ESI*) m/z: [M—-PFs]"

calculated for CsoHgsN7O2", 796.5273; found, 796.5270.

Axle Az: Axle Az was prepared from compound 4 (150.00 mg, 0.33 mmol), stopper 6 (244.60 mg, 1.00

mmol), and [Cu(CH3CN)4]PFs (247.70 mg, 0.66 mmol) by following the same procedure for the synthesis

of Axle A as yellowish wax (160.80 mg, yield 51%). '"H NMR (500 MHz, CDsCN) § 7.87 (s, 2H, Ha),

7.44 (s, 2H, Hy), 7.29 (d, J= 8.4 Hz, 4H, H.), 7.20 (d, J = 1.3 Hz, 4H, Hy), 6.98 (d, /= 8.4 Hz, 4H, H,"),

5.50 (s, 4H, Hr), 5.14 (s, 4H, Hy"), 3.90 (s, 4H, Hy'), 1.27 (s, 36H, Hi). 3C NMR (126 MHz, CD3CN) §

159.4 (C), 152.6 (Cj?), 144.6 (Cr), 136.1 (Cy), 131.7 (Cx), 128.5 (Ce'), 124.7 (Cs), 123.5 (Ca), 123.5

S9



(Cy), 115.8 (Ce), 62.4 (Cg), 55.0 (C), 52.25 (Cy), 35.5 (Co), 31.6 (Ci). HRMS (ESI*) m/z: [M—PFs]"

calculated for CsoHgsN-7O2", 796.5273; found, 796.5270.

3. 2D ROESY 'H NMR spectra of [2]rotaxanes Rx-2

ppm

bl ' [ 4.0

H
° é ol Fas
f )
- B

H:™
<
— . ® -
0 )( : ) 5.0
R ¢

T

1

1

=

T

I

1

1

1

1
-
T1

[ 5.5

] [ 6.0

' [ 6.5
' 7.0
5 ’ : 7.5
& » ¥
o - 8.0
T T T T T T T T T
80 75 70 65 60 55 50 45 4.0 (ppm)

Fig. S1 2D ROESY 'H NMR spectra of [2]rotaxanes Rx-2. NMR Conditions: 500 MHz, 1 mmol/L, 298
K, CDs;CN.

4. VPF diffusion coefficients (D) of macrocycle 1, axle A; and

[2]rotaxane Rx-1

Measurements were performed on a Bruker 500 MHz spectrometer with CD3;CN as solvent at a
concentration of 1.0 mM and 298 K. The sequence of °F diffusion coefficients (D) was ledbpgp2s. DS

=4 and NS = 16.
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Fig. S2.
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Table S1: Diffusion coefficients (D) of 'F in different compounds.

YF NMR peaks Compounds Diffusion coefficients (D)
Macrocycle 1 1.170 x10°° m?/s
-71 ppm (Fa)
[2]Rotaxane Rx-1 8.753 x 1071 m¥/s
Axle Aq 1.135 <10 m?%/s
-63 ppm (Fg)
[2]Rotaxane Rx-1 8.742 x 10719 m¥/s

5. Th

and T: determination

The pulse sequence for measuring T was tlir, T| values were extracted from a series of GRE images

with rec

overy times 0.08, 0.2, 0.4, 0.8, 1.2, 1.6, 2.0, 2.6, 3.4, 4.2, 5.0, 6.0, 7.0, 9.0, 11.0, 15.0 s, and 16

averages. The pulse sequence for measuring T, was cpmg, T> values were extracted from a series of GRE

images with recovery times 2000, 2200, 2400, 2800, 3200, 4000, 4800, 6000, 7200, 8600, 9400, 11000,

16000, 25000, 40000, 60000 s, and 16 averages.
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Fig. S3. Signal intensity (A.U.) vs recovery time (ms) collected for macrocycle 1, axles A1 and Az, and

[2]rotaxanes Rx-1, Rx-2, and Rx-2".

Table S2. Ty and T» of F4 in the macrocycle, and [2]rotaxanes.

Compounds

1 (Fa) Rx-1 (Fa) Rx-2 (Fa) Rx-2’ (Fa)
Ti (s) 1.406 1.079 1.103 1.112
T2 (s) 1.052 0.750 0.763 0.762
Table S3. Ty and T, of Fg and H; in the axles, macrocycle, and [2]rotaxanes.
Compounds A1 (Fp) Rx-1 (Fg) Az (H) Rx-2 (H)
T1 (s) 1.827 1.692 2.001 1.771
T2 (s) 1.409 1.296 1.666 1.496
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6. ’F MRI phantom experiments of macrocycle 1, [2]rotaxanes Rx-2

and Rx-2’

F MRI phantom experiments were performed on a Bruker BioSpec 400 MHz MRI system. The
temperature of the magnet room was maintained at 24 °C during the experiment. The '°F phantom images
were acquired using a RARE pulse sequence, RARE factor = 4, matrix size = 32 x 32, slice thickness =

20 mm, FOV=3.0 cm %3.0 cm, TR = 600 ms, TE = 17.5 ms, scan time = 307 s.

500 M 250 M 125uM 62.5 uM

Rlee | )
K00
ixl®oec |

Fig. S4 '°F MRI phantom images (9.4 T, 298 K, CH3CN, concentration as indicated)

7. Single-crystal X-ray data of macrocycle 1 and [2]rotaxane Rx-1

Macrocycle 1: The crystal was grown from liquid-liquid diffusion in acetone and n-hexane (1 : 3) at 4 °C
and acquired using CuKa (A = 1.54184 A) radiation. The crystal structure is deposited in the Cambridge
Crystallographic Data Centre (CCDC Code: 2126397).

Crystal Data for CsoHasF36014 (M = 1556.88 g/mol): Crystal size = 0.28 x 0.22 x 0.18 mm3, Bond
precision: C-C = 0.0050 A, Wavelength = 1.54184 A, a=23.1352(2) A, b=7.0743(1) A, ¢ =18.6292(1)
A, 0.=90° B =90.083(10)°, y = 90°, Temperature = 100 K, Volume = 3048.95(5) A*, Space goup P 1
21/c 1, Hall goup -P 2ybc, Moiety fomula CssH36F36012, 2(C3HsO) Sum formula CsoHasF36014, Mr =
1556.88 g/mol, Dcalc = 1.696 g/cm?, Z = 4, y(MuKa) = 1.752 mm™!, FO00 = 1568.0, (h, k, lmax) = (25, 7,

20), Nrer = 4502, Tmin = 0.582, Tmax = 1.000, Data completeness = 0.998, Theta(max) = 59.997,
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R(reflections) = 0.0549(4445), wRx(reflections) = 0.1612(4502), S = 1.067, Npar = 466.

Prob = S0
Temp = 100

7Y

- (130721)

PLATON-Dec 22201:36:15 2021

Z -144 20210521 _1quan P 1 21/c 1 R = 0.05 RES= 0-124 X

Fig. S5. X-Ray structure of 1 (50% probability level shown)

[2]Rotaxane Rx-1: The crystal was grown from liquid-liquid diffusion in ethyl ether and 2-butanone
and n-hexane (0.5 : 0.5 : 3) at 15 °C and acquired using CuKa (A = 1.54184 A) radiation. The crystal
structure is deposited in the Cambridge Crystallographic Data Centre (CCDC Code: 2126385).

Crystal Data for CssH74F54N701sP (M = 2502.49 g/mol): Crystal size = 0.04 x 0.04 x 0.02 mm?, Bond
precision: C-C = 0.0079 A, Wavelength = 1.54184 A, a=22.7294(2) A, b=19.3316(2) A, ¢ =24.9762(3)
A, a=90° B =95.655(10)°, y = 90°, Temperature = 100 K, Volume = 10921.0(2) A3, Space goup P 1
21/c 1, Hall goup -P 2ybc, Moiety fomula F¢P, C4sH36F36012, C3sH30F12N70,, C4HsO. Sum formula
CssH74F54N7015P, Mr= 2502.49 g/mol, Dcalc = 1.522 g/cm?®, Z = 4, w(MuKa) = 1.623 mm™!, FO00 =
5040.0, (h, k, lmax) = (27, 23, 28), Nier = 20174, Tiin = 0.841, Tmax = 1.000, Data completeness = 0.978,
Theta(max) = 69.767, R(reflections) = 0.1479(15065), wRx(reflections) = 0.4528(20174), S = 1.939,

Npar = 1398.
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Fig. S6. X-Ray structure of Rx-1 (50% probability level shown).

8. Molecular dynamics simulations

Based on the X-ray structure of pinwheel rotaxane, three modeling systems were constructed: the
conformation of the rotaxane with pinwheels and axis; the pinwheels and axis conformation with the
neutral charge at the center nitrogen atom; and the only pinwheels conformation. To obtain the initial
configurations for the molecular dynamics (MD) simulations, each modeling system was packed at the
center of the cube by the edges of 70A, surrounded with 5000 individual solvent molecules of acetonitrile
using the Packmol program [8].

All MD simulations were performed by the AMBERI14 software package supported GPU
computation with the CUDA version of the pmemd program [9]. The topology parameters of the
modeling systems were generated by quantum mechanical HF/6-31G* optimizations from Gaussian09
software [10] cooperated with RESP [11] approach and GAFF [12] force field from AMBER package.

The conventional procedures were carried out to produce MD trajectories of each system. Firstly,
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the systems of energy were minimized to relieve energetic strain from the packing procedure. Secondly,

equilibration processes were conducted with the systems heated in constant volume (NVT ensemble) and

equilibrated in constant pressure (NPT ensemble) conditions. During the heating process, the temperature

was increased gradually from 0 K to 300 K by 10,000 steps with a time step of 2.0 fs, and then a further

10,000 steps were performed under the temperature of 300 K. During the subsequent process, the systems

were equilibrated under the constant pressure of 1.0 bar using Berendsen barostat by 5 million steps in a

1.0 fs time step for 5 ns in total. Finally, the production MD simulations were performed for 30 ns under

the identical procedure of equilibration in the NPT ensemble. Analyses of the trajectories were applied

CPPTRAJ program [13] and in-house scripts.

To evaluate the °F-atom movements quantitatively, we calculated the distance root-mean-square

deviation (Drmsd) [14] of '°F atoms to the reference structure, the X-ray structure for the structural

analysis. The definition of the Drmsd is expressed as:

l N N
Drmsd = —Z Z (Dij - Dref,ij )2

N pair i=1 j:i+l

1

with N .. = 5 N(N — 1), where N denotes the total number of '°F atoms of each conformation

pair
referring to the simulated and reference structures. Dj; is the distance between instantaneous positions of
19F atoms of each frame along the simulated trajectories, and D,.s; represents the corresponding distance

of the '"F-atom pairs in the reference structure. The Drmsd values provide the similarity measures of the

inter 1°F-atom positions to the reference structure.

9. Solid-state NMR experiments

The rotational motions were quantified using “rotational correlation time (t.)”. We carried out '°F
magic angle (MAS) NMR experiments, a well-established tool for probing t. [15-17], on macrocycle 1
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and [2]rotaxane Rx-2 in solid state (Figure S7a-S7d). The '°F relaxation rates R; and R; are composed of
the heteronuclear dipole interaction (qpp) and the chemical shift anisotropy (qcsa) of the '°F atom, which

can be obtained from the following Equations [15]:

Ry =X qpp, U(wr — wy) + 3/ (wp) + 6] (wp + wy)] + qcsal (wp) [1]
Ry = 2% ap, [4)(0) +J(wr — wy) + 3] (@) + 6] (@p) + 6] (0r + 0i)] + = acsal4/ (0) + 3] (@p)] [2]

2 2
Gesa = =0} (1+254) 452 (3]

1 -
oo = = () RyEvirie [4]

10 \ax
J() = i [5]

Where & is the chemical shift anisotropy of the '°F atom (8§, = 833 — (811 + 8,,+833)/3)) measured
by solid-state NMR, and the three different & represent the chemical shift tensor in three different
directions, respectively. The asymmetry parameter 754 Was given by 1¢sq = (852 — 811)/04. yu and vy
represent the gyromagnetic ratio of 'H and '°F, while oy and wr denote the Larmor frequency of 'H and

F, respectively. The other parameters are vacuum permeability (o), reduced Planck constant (h), and

inter-nuclear distance (rur) between 'H and !°F.

|

728 — )| — -73.7

(b)

9F Chemical shift (ppm)

Fig. S7. '°F DP-MAS NMR spectra of macrocycle 1 (a, b) and [2]rotaxane Rx-2 (c, d) collected at the
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spinning rates of 4 kHz (a, ¢) and 10 kHz (b, d).

Combined with the measured relaxation rates (R; and R»), we obtained the rotational correlation

times (t¢) for macrocycle 1 and [2]rotaxane Rx-2, as shown in Figure S8.

—— R, of [2]rotaxane Rx-2
169 R; of [2]rotaxane Rx-2
————— R, of macrocycle 1 7, (Rx-2) = 318 ps =~

1.4 R; of macrocycle 1 ==
o a
2 T R,= 1311251
»
= 1.2 4
-
g
£ z.(1) = 142 pg”
= / -
« 1.0 & =0.9506s!
K v A R=0906651 T 093008

\ S —

E e

0.8

0.6 - /

T i T T T T
100 200 300 400 500
Te(ps)

Fig. S8. The plot of relaxation rate and rotational correlation time of macrocycle 1 and [2]rotaxane Rx-
2.

Table S4. '°F CSA parameters (in ppm) of CF; groups in macrocycle 1 and [2]rotaxanes extracted from

the DMFIT software package.

sample o1 322 33 dc
Macrocycle 1 -59.96 -68.94 -90.85 -17.60
[2]rotaxane Rx-2 -58.95 -68.34 -91.83 -18.79
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Fig. S9. 'H—!3C (a, b) and '’F—!3C (c, d) CP/MAS NMR spectra of macrocycle 1 and [2]rotaxane Rx-

2. a, ¢ belongs to macrocycle 1, and b, d belongs to [2]rotaxane Rx-2.
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HRMS of macrocycle 1
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"H NMR of compound 4b
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HRMS of compound 4
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"H NMR of compound 6
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9F NMR of axle A1
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HRMS of axle A1
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3C NMR of axle A2
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"H NMR of [2]rotaxane Rx-1
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13C NMR of [2]rotaxane Rx-1
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"H NMR of [2]rotaxane Rx-2
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13C NMR of [2]rotaxane Rx-2
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"H NMR of [2]rotaxane Rx-2’
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3C NMR of [2]rotaxane Rx-2’
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