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Purpose: To fast and accurately reconstruct human lung gas MRI from highly 
undersampled k‐space using deep learning.
Methods: The scheme was comprised of coarse‐to‐fine nets (C‐net and F‐net). 
Zero‐filling images from retrospectively undersampled k‐space at an acceleration 
factor of 4 were used as input for C‐net, and then output intermediate results which 
were fed into F‐net. During training, a L2 loss function was adopted in C‐net, while 
a function that united L2 loss with proton prior knowledge was used in F‐net. The 
871 hyperpolarized 129Xe pulmonary ventilation images from 72 volunteers were 
randomly arranged as training (90%) and testing (10%) data. Ventilation defect per-
centage comparisons were implemented using a paired 2‐tailed Student’s t‐test and 
correlation analysis. Furthermore, prospective acquisitions were demonstrated in 5 
healthy subjects and 5 asymptomatic smokers.
Results: Each image with size of 96 × 84 could be reconstructed within 31 ms (mean 
absolute error was 4.35% and structural similarity was 0.7558). Compared with con-
ventional compressed sensing MRI, the mean absolute error decreased by 17.92%, 
but the structural similarity increased by 6.33%. For ventilation defect percentage, 
there were no significant differences between the fully sampled and reconstructed 
images through the proposed algorithm (P = 0.932), but had significant correlations 
(r = 0.975; P < 0.001). The prospectively undersampled results validated a good 
agreement with fully sampled images, with no significant differences in ventilation 
defect percentage but significantly higher signal‐to‐noise ratio values.
Conclusion: The proposed algorithm outperformed classical undersampling methods,  
paving the way for future use of deep learning in real‐time and accurate reconstruc-
tion of gas MRI.
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1 |  INTRODUCTION

MRI is a non‐invasive and radiation‐free technique, pro-
viding high‐resolution images of anatomical structures and 
physiological functions. However, conventional 1H MRI is 
challenging to use for the lung because of the low proton spin 
density throughout the lung tissue. Hyperpolarized (HP) gas 
MRI (e.g., 3He or 129Xe) has been used for human lung struc-
ture and function imaging.1 In particular, HP 129Xe MRI is 
able to evaluate gas exchange and uptake due to the good 
solubility of xenon in blood and tissues.1,2 Nevertheless, the 
longitudinal magnetization of HP gas is nonrenewable, which 
imposes limits on MRI acquisition.3 Moreover, most HP gas 
MRI methods acquire data during a single breath‐hold, but 
long breath‐holding time imposes burdens on subjects, es-
pecially for those patients with compromised respiratory 
function. Accordingly, various efforts have focused on ac-
celerating the acquisition of HP gas MRI, including meth-
ods based on parallel imaging,4 radial,5 spiral,6 compressed 
sensing MRI (CS‐MRI),7 or the combination of these tech-
niques.8,9 Among them, CS‐MRI is a good solution to shorten 
scan time by undersampling measurements in k‐space, and 
without additional hardware required.10

Ajraoui et al first applied CS to reconstruct HP 3He lung 
images at an acceleration factor (AF) of 2 for 2D images and 
5 for 3D ventilation images.11 Combining some prior knowl-
edge, an AF of 3 was achieved for 2D images with less re-
construction errors.12 Moreover, CS was used to facilitate 
multiple b‐value 3He/129Xe diffusion‐weighted MRI during a 
single breath‐hold.13,14 However, conventional CS‐MRI had 
some limitations: (1) The sparse transforms (e.g., total vari-
ation15 or discrete wavelet transform10) could be inadequate 
to describe complex image contents, especially for biologi-
cal tissues. This could lead to artifacts and loss of detailed 
structures in reconstructed results.16,17 (2) CS used iterative 
strategies to optimize some objective functions, which was 
typically time‐consuming. (3) The choice of hyper‐parameters  
(e.g., update rates, weighting parameters) was tedious, which 
possibly caused excessively smooth or residual undersam-
pling artifacts in reconstructed results.16 Therefore, effective 
reconstruction methods are needed to be explored.

Recently, deep learning has been successfully ap-
plied in many computer vision problems.18 In particular, 
convolutional neural networks (CNNs) are becoming the 
state‐of‐the‐art strategies for image classification,19 super‐
resolution,20 restoration,21 and segmentation.22 Meanwhile, 
CNNs based MRI reconstruction, such as variational net-
work16 and deep de‐aliasing generative adversarial net-
works,17 has also been validated significant improvements 
over CS‐MRI regarding reconstruction quality and speed.23 
Such methods learn the nonlinear mapping between the 
undersampled images or k‐space and reference images by 
training CNNs.24,25 Currently, most of the CNNs methods 

take fully sampled (FS) images as references and focus 
on brain or knee MRI, which have large amounts of high‐ 
resolution and signal‐to‐noise ratio (SNR) training data.24-26 
However, HP gas MRI is susceptible to noise or artifacts 
due to the nonrenewability of HP magnetization.3 Thus, 
it is expensive or difficult to obtain multiple high‐quality 
HP gas images. Moreover, as the noise level increases, the  
reconstruction results using CNNs become more blurred.16,25  
Therefore, it may not be effective to directly apply CNNs 
into the reconstruction of HP gas MRI.

It is known that some prior knowledge (e.g., organ struc-
ture) has potential to improve the performance of image 
analysis, especially for cases where images are corrupted or 
contain artifacts due to limitations in image acquisition.27 For 
example, the performance of CS‐MRI was improved by in-
corporating the prior knowledge of polarization decay and 
mutual anatomical information from proton (1H) images.12 
By uniting anatomical prior knowledge into CNNs, a generic 
training strategy achieved the state‐of‐the‐art prediction ac-
curacy in image segmentation.27 Similarly, if some prior 
knowledge (such as lung structure and/or boundaries) is inte-
grated into a CNNs model, the reconstruction performance of 
HP gas MRI will be improved.

In this work, we first propose a cascaded CNNs model 
incorporating prior knowledge of 1H images (called as 
CasNet) to reconstruct HP gas images from highly un-
dersampled k‐space. We expect that the CasNet is able to 
reconstruct the real‐time human lung, while not only re-
moving aliasing artifacts but also refining structural details 
of the lung.

2 |  METHODS

2.1 | Cascaded CNNs
Assume that x ∈ CN denotes a desired HP gas MR image, 
which needs to be reconstructed from the undersampled  
k‐space y ∈ CM (M << N), that is,

where Fu ∈ CM×N denotes an undersampled Fourier en-
coding matrix and n ∈ CM denotes the acquisition noise. 
Under conditions of Cartesian undersampling patterns, 
Fu = UF, where U is an undersampled mask and F is 2D 
Fourier transform. However, the reconstruction of x from y 
is an ill‐posed problem owing to M << N. CS‐MRI usually 
solves such issue through an unconstrained optimization 
strategy.10

Different to CS‐MRI, the CasNet reconstructs x by train-
ing CNNs models (see Figure 1), which includes 1 coarse 
net (named as C‐net) and 1 fine net (named as F‐net). The 

(1)y=Fux + n
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C‐net aims to eliminate image aliasing and find the following 
minimization.

where xC is the coarse estimation of x, and x0 is the zero‐filling  
result. The C‐net, C, takes x0 as input and adopts unknown  
parameters θC. We use FS images as references during training. 
Because the references are typically corrupted with noise due 
to the nonrenewable HP magnetization, the intermediate results 
xC may become blurred16,25 and lose structural details of the 
lung (see Figure 1). Consequently, C‐net is cascaded into F‐net, 
aiming to refine structural details within the lung region. The 
F‐net is to solve the following minimization.

where xF is the fine estimation of x, · is the element‐wise mul-
tiplication, and m is the prior knowledge. The F‐net, F, takes 
xC as input and uses unknown parameters θF. In this work, lung 
boundaries obtained from 1H images are taken as prior knowl-
edge because there is no HP gas signal outside the lung mask 
(see Figure 1). Then m is described as,

where i is the pixel index, and Ω is the lung region. m is a bi-
nary mask, which indicates the lung and background noise. In 

this way, the reconstruction is constrained in the lung region, 
which potentially improves structural details of the lung. 
Note that 1H and HP gas images are acquired in the same 
breath‐hold, and then these images are well spatially regis-
tered.28 Combining Equations 2 and 3, the target objective 
function can be defined as,

2.2 | Network architecture
U‐Net based architecture is used in both the C‐net and F‐net 
because it has some advantages, such as multilevel decom-
position, multichannel filtering and multiscale skip connec-
tions.22,29 U‐Net has been successfully applied for MRI or CT 
reconstruction.29,30 The detailed architecture of U‐Net is dis-
played in Figure 2, which comprises a contracting path and 
an expansive path. In the contracting path, each stage con-
tains 2 sequential 3 × 3 convolution layers with stride 1, and 
each convolution layer is followed by batch normalization31 
and rectified linear unit activation. Then a 2 × 2 max pool-
ing with stride 2 is applied. Thus, the size of feature maps is 
halved after each pooling layer. If the size of input image is 
96 × 96, the size of feature maps will become 6 × 6 in the last 
stage. Note that zero‐padding is adopted for each convolu-
tion layer so that the size of feature maps does not decrease 
after convolution. In the expansive path, each stage starts 
with a 3 × 3 up‐convolution layer with stride 2, followed by 
batch normalization and rectified linear unit activation. The  
up‐convolution layer doubles the size of feature maps and 
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F I G U R E  1  The scheme of the CasNet for undersampled reconstruction of human lung gas MRI. The C‐net takes zero‐filling images as 
inputs and then outputs coarse reconstruction results. The intermediate results are fed into the F‐net for further improving structural details  
of the lung
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halves the number of channels. Then the up‐convolution 
output is concatenated with the mirrored feature maps from 
the contracting path. The final layer only contains a 1 × 1 
convolution layer to combine 64 feature maps into the output 
image.

2.3 | Data acquisition and preprocessing
Seventy‐two subjects were enrolled for this study after pro-
viding informed consents, including 30 healthy, 2 asthma, 
9 chronic obstructive pulmonary disease (COPD), 2 bron-
chiectasis (BE), 9 chronic inflammation (CI), 2 pulmonary 
tuberculosis (PT), and 16 pulmonary nodule (PN) subjects 
(see Table 1 for the details about subjects’ information). All 
experiments were approved by the local Institutional Review 
Board. Experiments were performed on a 1.5T whole‐body 
MRI scanner (Avanto, Siemens Medical Solutions). Enriched 
129Xe gas [1% enriched xenon (86% 129‐isotope), 89% 4He, 
and 10% N2] was polarized by means of spin‐exchange opti-
cal pumping with “freeze‐out” accumulating in a cold finger 
using a home‐built xenon polarizer. Then, 500 mL HP 129Xe 

was thawed into a Tedlar bag and mixed with 500 mL medical  
grade N2. The available polarization was approximately 25% 
in the bag. After that, the subjects were instructed to inhale 
the gas mixture from functional residual capacity, and then 
hold their breath for data acquisition.

The MRI parameters for HP 129Xe imaging32 were: repetition 
time/echo time (TR/TE) = 4.2/1.9 ms, matrix size = 96 × 84,  
field of view = 384 × 336 mm2, slice thickness = 8 mm, band-
width = 38.4 kHz, number of slices = 24, 3D bSSFP sequence, 
flip angle (FA) = 10°, scan time = 8.4 s. During the same 
breath‐hold, anatomic 1H images were acquired after 129Xe 
MR imaging. The MRI parameters for 1H imaging were: TR/
TE = 2.4/0.7 ms, matrix size = 96 × 84, field of view = 384 ×  
336 mm2, slice thickness = 8 mm, bandwidth = 48 kHz,  
number of slices = 24, 3D FLASH sequence, FA = 5°, scan 
time = 2 s. The total acquisition time, including the time 
delay between the 2 scans, was approximately 11 s.

Due to lack of HP gas signal or high‐level noise, we re-
moved those slices whose SNR was less than 6.6 because such 
slices could not meet the requirements of image analysis.33 
After that, 871 HP 129Xe ventilation images and same‐breath 

F I G U R E  2  The detailed architecture of U‐Net. The number of channels is denoted below each feature map. Note that Conv denotes 
convolution; Up‐conv denotes up‐convolution

Clinical indications Age (mean ± SD)

Subject number Image number

Male Female Train Test

Healthy 36.7 ± 12.3 17 13 353 33

Asthma 43.5 ± 23.3 0 2 23 2

COPD 58.0 ± 12.9 8 1 78 10

BE 60.5 ± 24.7 2 0 22 6

CI 59.6 ± 11.3 9 2 113 6

PT 66.5 ± 21.9 1 1 20 7

PN 52.7 ± 11.7 7 9 174 23

Total 48.1 ± 16.0 44 28 784 87

Abbreviations: COPD, chronic obstructive pulmonary disease; BE, bronchiectasis; CI, chronic inflammation; PT, pulmonary tuberculosis; PN, pulmonary nodule; SD, 
standard deviation.

T A B L E  1  Subjects’ information grouped by broad classes of clinical indications
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anatomic 1H images were obtained from 72 subjects. Table 1  
listed the subjects’ information grouped by broad classes 
of clinical indications. A total of 784 images (90%) were  
randomly chosen for training the CasNet, and the other 87 
images (10%) for testing its performance. To reduce over‐ 
fitting and improve the performance of CasNet, we applied 
data augmentation on the training set.23 Particularly, we  
rotated the original images by 90°, 180°, 270°, and flipped 
original ones horizontally. This generated 4 additional aug-
mented images for each original image. Thus, the total num-
ber of training images was 3920.

During training and testing, FS images were considered 
as references. Zero‐filling images were taken as inputs in the 
C‐net, which were obtained by retrospectively undersampling 
the reference k‐space data in 1 phase‐encoding direction (ky) 
according to a variable‐density Cartesian random undersam-
pling matrix. The matrix was generated using a Monte Carlo 
algorithm at an AF of 4.10 Because both the input and output 
were the real‐valued data type, all training and testing data 
were transformed into magnitude images. Furthermore, each 
image was normalized to [0, 1], then the normalized images 
were padded to 96 × 96, aiming to be compatible with U‐Net 
architecture.

To validate the performance of CasNet for in vivo im-
aging, the FS and undersampled data (the AF was set to 4) 
were prospectively acquired from 5 healthy subjects (age, 
25.6 ± 2.4 years) and 5 asymptomatic smokers (age, 54.2 ± 
11.3 years) with a smoking history of at least 12 pack‐years. 
For the FS acquisition, the FA was set to 10°. According to 
the effects of k‐space filter34 and signal evolutions in k‐space 
center,11,35,36 the FA was set to 15° for the undersampled ac-
quisition. The undersampled acquisition adopted a custom 
pulse sequence, which could faithfully reproduce the under-
sampling pattern used in the retrospective analysis.

2.4 | Implementation and training
The CasNet was implemented through the MatConvNet 
toolbox (ver.24)37 in the MATLAB 2017a environment 
(MathWorks, Natick, MA). Training and testing were per-
formed on a desktop computer with an NVIDIA TITAN Xp 
GPU and an Intel Xeon(R) E5‐2407 CPU.

Because of a large number of parameters and deep layers 
in the CasNet, we used incremental manner to train the C‐net 
and F‐net separately, aiming to avoid over‐fitting and mem-
ory shortages.25 The hyper‐parameters were: momentum =  
0.9, weight decay = 10‒4, and batch size = 16. The learning 
rate was logarithmically reduced at each epoch from 10‒2 
to 10‒5 during the first 30 epochs. The gradient clipping 
parameter for the C‐net was 10‒3, and 10‒5 for the F‐net. 
Then, the Xavier method was used to initialize all the net-
work parameters,38 and these parameters were optimized 
through the stochastic gradient descent with momentum 

approach. The training was stopped after 100 epochs. It 
took approximately 4 h to train each network and total 8 h 
for the CasNet.

2.5 | Performance evaluation
To evaluate the efficacy of fine stage in the CasNet, the 
reconstruction results through the C‐net and F‐net were 
compared in a cascaded manner. Because CS‐MRI could 
achieve the state‐of‐the‐art reconstruction from under-
sampled HP gas data, the CasNet was compared with  
CS‐MRI,11,39 which was to solve the following minimiza-
tion equation.

where Ψ was the sparsifying transform (here lifting‐scheme 
wavelet40,41), TV was the total variation regularization, and 
λ1, λ2 were weighting parameters to balance data fidelity and 
artifact reduction. The CS‐MRI was also implemented in 
MATLAB. The weighting parameters were estimated indi-
vidually for each reconstruction by means of the grid search 
strategy that minimized the mean absolute error (MAE) be-
tween the reconstructed and FS images.16

Because the MAE and structural similarity (SSIM)42 were 
widely used to evaluate the reconstruction performance, we 
adopted such indexes to quantitatively assess the performance 
through the C‐net, F‐net, and CS‐MRI. The MAE was used to 
evaluate the mean absolute difference between the reference 
and reconstructed images,11 while the SSIM was to evaluate the 
structure similarity between those images. Both the MAE and 
SSIM were computed over the lung region defined by a mask 
segmented from 1H images. From the definition, lower MAE 
or higher SSIM values indicated better reconstruction quality.

Moreover, HP gas ventilation images could estimate ven-
tilation defects for patients with obstructive lung diseases, 
such as COPD and asthma.43 When combined with spatially 
registered 1H images of the lung, ventilation defect percent-
age (VDP) was a commonly used quantitative metric of lung 
function. VDP was defined by the ratio of the ventilation de-
fect volume in HP gas images to the thoracic cavity volume in 
1H images, which required the definition of ventilation defect 
regions in HP gas images through the hierarchical k‐means 
cluster44 and the thoracic cavity mask by means of the region 
growing in 1H ones.

A Bland‐Altman plot was to assess the consistency of VDP 
between the reference and reconstructed images through the 
CasNet. Moreover, a paired 2‐tailed Student’s t‐test was used to 
test whether there were significant differences regarding VDP 
between the reconstructed and reference images, and Pearson 
correlation coefficients (r values) were used to evaluate their 
relationship. P < 0.05 was considered statistically significant.
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3 |  RESULTS

3.1 | C‐net versus F‐net
Figure 3 depicts the FS and reconstructed images obtained 
using the zero‐filling, C‐net and F‐net of the 16th slice of the 
lung from a healthy volunteer (A1‐D1), and the 10th slice 
from a PT subject (A2‐D2). It can be seen that there exist 
severe oscillatory artifacts, and most of the lung structures 
are lost in Figure 3B1,B2. After the C‐net, the undersam-
pling artifacts are successfully removed and the detailed 
structures are restored to some extent (see Figure 3C1,C2). 
However, some details are blurred owing to the high AF, 
especially in green boxes. Through the F‐net, those blurred 
details are restored and sharpened, especially in lung 
edges and low ventilation regions (see Figure 3D1,D2). 
Meanwhile, the MAE and SSIM metrics are listed under 
the images. It can be found that the F‐net owns the lowest 
MAE and highest SSIM values.

Table 2 lists the average MAE and SSIM values obtained 
using different algorithms for the healthy, asthma, COPD, 
BE, CI, PT, and PN test data, respectively. The total average 
MAE and SSIM values are listed in the last row of Table 2.  
Compared with zero‐filling images, C‐net and F‐net own 

lower MAE and higher SSIM values. In comparison with  
C‐net, F‐net leads to the decrease of MAE by 4.09%, 3.73%, 
5.73%, 12.50%, 5.71%, 8.96%, and 4.29% for the 7 test sets, 
while the increase of SSIM by 3.29%, 3.77%, 2.45%, 6.30%, 
4.09%, 3.57%, and 3.12%, respectively.

3.2 | CS‐MRI versus CasNet
Figure 4 shows the FS images and reconstructed results 
through the zero‐filling, CS‐MRI, and CasNet. For a COPD 
subject, Figure 4A1 shows the FS image of the 14th slice of 
the lung, and the retrospectively undersampled results are 
displayed in Figure 4B1,C1,D1. We can see that there are 
large focal ventilation defects within the lung in Figure 4A1. 
However, the artifacts in Figure 4B1 cover the ventilation 
defects. After the CS‐MRI, the artifacts are slightly removed 
and the fine details are restored to some extent, but unnat-
ural block patterns are produced, as shown in Figure 4C1. 
Through the CasNet, the aliasing artifacts are successfully 
removed and most of the details are restored, as displayed in 
Figure 4D1.

Figure 4A2 shows the FS image of the 11th slice of 
the lung from a PN subject, and the reconstructed results 

F I G U R E  3  Reconstructed results obtained using the zero‐filling, C‐net, and F‐net at an AF of 4. A1, One slice of FS image from a healthy 
volunteer. A2, One slice of FS image from a PT subject. B1-B2,C1-C2,D1-D2, Reconstructed results through the zero‐filling, C‐net, and F‐net, 
respectively. Magnified regions of green boxes are placed at the right bottom of the corresponding images. The quantitative metrics are also listed 
under the images
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through the zero‐filling, CS‐MRI, and CasNet are shown in 
Figure 4B2,C2,D2, respectively. It can be seen that there 
are serious noises in Figure 4A2, and severe undersampling 
artifacts exist in Figure 4B2. The artifacts linger in the CS‐
MRI results. However, after the CasNet, the artifacts are 
successfully removed and most of the lung details are re-
stored, especially in the green boxes in Figure 4D2. The 
CasNet can improve the conspicuity of detailed tissues and 
sharp boundaries of the lung, which is not accessible with 

the CS‐MRI. Moreover, the CasNet holds the lowest MAE 
and highest SSIM values.

The quantitative measures for all test data through the 
CS‐MRI are also listed in Table 2. It can be seen that the 
CasNet outperforms the CS‐MRI in terms of MAE with a de-
crease by 21.42%, 10.99%, 24.45%, 20.65%, 8.42%, 17.70%, 
and 11.69% for the healthy, asthma, COPD, BE, CI, PT, 
and PN sets, and SSIM with an increase by 6.80%, 9.05%, 
5.38%, 8.99%, 2.93%, 6.36%, and 6.11%, respectively. For 

F I G U R E  4  Reconstructed results obtained using the zero‐filling, CS‐MRI, and CasNet at an AF of 4. A1, One slice of FS image from 
a COPD volunteer. A2, One slice of FS image from a PN subject. B1-B2,C1-C2,D1-D2, Reconstructed results obtained using the zero‐filling, 
CS‐MRI and CasNet, respectively. Magnified regions of green boxes are placed at the right bottom of the corresponding images. The quantitative 
metrics are also listed under the images

T A B L E  2  Average MAE and SSIM values obtained using the zero‐filling, CS‐MRI, C‐net, and F‐net for the 7 test sets at an AF of 4

Clinical indications Zero‐filling MAE/SSIM CS‐MRI MAE/SSIM C‐net MAE/SSIM F‐net MAE/SSIMa

Healthy 0.1113/0.6016 0.0537/0.7166 0.0440/0.7409 0.0422/0.7653

Asthma 0.1051/0.6120 0.0464/0.7035 0.0429/0.7393 0.0413/0.7672

COPD 0.1089/0.5886 0.0544/0.7213 0.0436/0.7419 0.0411/0.7601

BE 0.1348/0.5675 0.0494/0.7184 0.0448/0.7366 0.0392/0.7830

CI 0.0953/0.6033 0.0487/0.7300 0.0473/0.7219 0.0446/0.7514

PT 0.0857/0.6071 0.0469/0.7232 0.0424/0.7427 0.0386/0.7692

PN 0.1297/0.5679 0.0556/0.6878 0.0513/0.7077 0.0491/0.7298

Total 0.1142/0.5896 0.0530/0.7108 0.0460/0.7307 0.0435/0.7558
aThe lowest MAE and highest SSIM values are bold faced. 
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the total test data, the MAE decreases by 17.92% and SSIM 
increases by 6.33%. Furthermore, the reconstruction time is 
significantly reduced through the CasNet. Once the training 
is completed, the reconstruction is extremely efficient with-
out adjusting additional parameters. The overall reconstruc-
tion time for the 87 images is 2.7 s (approximately 31 ms for 
1 slice). In comparison, it is time‐consuming to optimize the 
hyper‐parameters in the CS‐MRI. Even if the parameters have 
been selected, the reconstruction time for the CS‐MRI with 
64 iterations is approximately 2600 ms for 1 slice on CPU.

3.3 | VDP
For all test data, Figure 5A shows the scatter plot of VDP 
values calculated from the FS and reconstructed images 
through the CasNet. A good correlation can be observed  
(r = 0.975; P < 0.001). Figure 5B shows the Bland‐Altman 
plot of the 2 measurements, where the mean bias ± standard 
deviation is 0.01% ± 0.91% (95% limit of agreement: ‒1.77% 
to 1.79%). This indicates that the VDP values of the FS and 
reconstructed images are in close agreement.

Figure 5C shows the VDP comparisons between the FS 
and reconstructed images for the total, healthy, COPD, BE, 
CI, PT, and PN test data. Because the asthma set only con-
tains 2 images, the comparison for this category is excluded. 
We can see that there are no significant differences regard-
ing VDP between the FS and reconstructed images for all the 
clinical indications (P > 0.05).

3.4 | In vivo
Figure 6A1,A2 shows the FS images from 2 healthy subjects, 
and the prospectively undersampled results by means of the 
zero‐filling and CasNet are shown in Figure 6B1‐B2 and 
C1‐C2, respectively. Figure 6D1,D2,E1,E2 show the cluster 

maps of A1,A2,C1,C2, respectively. Serious artifacts are  
observed in the zero‐filling images. Accordingly, it is difficult 
to represent structural details of the lung. However, through 
the CasNet, such artifacts are successfully removed, and 
some detailed structures appear sharp (see Figure 6C1,C2).  
This is helpful to delineate fine details of the lung. Figure 6A3‐A4  
display the FS images from 2 asymptomatic smokers, which 
exist obvious ventilation defect regions. Similar ventilation 
defects can also be identified in Figure 6C3,C4. However, 
such regions are covered by undersampling artifacts in  
Figure 6B3,B4.

The VDP, SNR, and SSIM terms are listed under each image 
in Figure 6. The VDP values derived from Figure 6C1‐C4  
remain consistent with those from Figure 6A1‐A4, confirm-
ing good preservation of the ventilation distribution with the 
CasNet. Moreover, the highest SNR values are obtained by 
using the CasNet. Because the FS and undersampled data 
are acquired in 2 different breath‐holds, the same slices from 
these 2 datasets are inherently misregistered and clearly not 
identical.12,39 Accordingly, direct quantitative comparisons 
between the prospective and FS images exhibit worse SSIM 
values than those of the retrospective results.

A summary of metrics for the 10 subjects is provided in 
Table 3. It can be found a good VDP agreement between 
the FS and reconstructed images for both the healthy sub-
jects and asymptomatic smokers (no significant differences). 
Compared with the FS images, SNR values of the recon-
structed images are significantly higher (P < 0.001).

4 |  DISCUSSION

4.1 | Cascaded CNNs
Recently, deep learning is fascinated in the field of MRI 
reconstruction.23-26 To our best knowledge, no study has 

F I G U R E  5  VDP comparisons between the FS and reconstructed images through the CasNet at an AF of 4. A, Scatter plot of VDP for all test 
data. Solid line indicates the line of equality. B, Bland‐Altman plot shows the mean bias (± standard deviation) in terms of VDP is 0.01% ± 0.91% 
(lower limit = −1.91% and upper limit = 2.05%) between the FS and reconstructed images for all test data. Solid line indicates the mean difference 
and dotted lines indicate the 95% limits of agreement. C, Boxplot of VDP of the FS and reconstructed images for different clinical indications.  
P values are listed under each category, n is the image number of each category
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investigated the applicability of deep learning to HP gas MRI 
reconstruction. In this study, we develop a CasNet model 
for HP gas MRI reconstruction from highly undersampled 
k‐space data, aiming to accelerate the imaging speed or ac-
quire more data. In the CasNet, the C‐net can remove under-
sampling artifacts and restore partial details of the lung, and 
the F‐net can further refine structural details of the lung by 
leveraging 1H image prior knowledge.

Experimental results validate that the CasNet can effec-
tively reconstruct HP gas ventilation images at an AF of 4. 
As shown in Figures 3 and 4, undersampling artifacts are 
successfully removed and detailed structures of the lung are 
well restored. For all test data, the MAE is 4.35% and the 
SSIM is 0.7558. However, the MAE becomes 5.30% and 
SSIM turns into 0.7108 through the CS‐MRI. This indicates 

that the CasNet is superior to the baseline methods (such as, 
zero‐filling and CS‐MRI). For different clinical indications, 
a good VDP agreement is observed between the FS and re-
constructed images through the CasNet. Furthermore, the 
CasNet is validated on prospective acquisitions for 5 healthy 
subjects and 5 asymptomatic smokers, which effectively pre-
serves edge sharpness and fine structures of the lung. There 
are no significant differences regarding VDP term between 
the FS and prospectively undersampled datasets. Although 
the training of CasNet may be time‐consuming, it can rap-
idly reconstruct HP gas images once the training procedure is 
completed (approximately 31 ms for reconstructing 1 image). 
This indicates that the CasNet satisfies the needs of real‐time 
reconstruction, while holding good reconstruction perfor-
mance at high AFs.

F I G U R E  6  Reconstructed results of the prospective acquisition from healthy subjects and asymptomatic smokers at an AF of 4. A1‐A2, 2 
slices of FS images from 2 healthy subjects. A3‐A4, 2 slices of FS images from 2 asymptomatic smokers. B1‐B4,C1‐C4, Reconstructed results 
obtained using the zero‐filling and CasNet, respectively. VDP, SNR, and SSIM values are listed under the images. D1‐D4, Cluster maps of 
ventilation regions of (A1‐A4). E1‐E4, Cluster maps of ventilation regions of (C1‐C4). Clusters represent the gradations of signal intensity, and red 
color denotes ventilation defect regions
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4.2 | Performance comparisons
Owing to the effective de‐aliasing performance of U‐Net, 
the C‐net can remove aliasing artifacts, even at high AFs. 
This is consistent with other results in previous works.29,30,45 
However, some structural details are still blurred and distorted 
in the lung, as shown in Figure 3C1,C2. The reason may be 
that the training data is corrupted by noise, which prevents 
the CNNs from learning the mapping between the zero‐filling 
and reference images.16,25,26 Nevertheless, high‐quality (even 
noiseless) training data are difficult or impossible to acquire 
due to the nonrenewability of HP magnetization. Thus, a 
refine stage is adopted to restore those blurred details by 
incorporating prior knowledge provided by 1H images (the 
reconstruction loss is only within the lung region and the 
background noise is excluded). In this case, the F‐net focuses 
on the reconstruction within the lung, which improves its ro-
bustness and repeatability. Both qualitative and quantitative 
results indicate that the refinement procedure can effectively 
improve structural details and sharpness of the lung. In fact, 
the L2 loss incorporating prior knowledge has been success-
fully applied in diverse fields. For example, the weighted 
context loss in semantic image inpainting also used the prior 
knowledge of binary mask to pay more attention to missing 
regions rather than background ones.46,47

From Figure 4C1,C2, it can be found that the CS‐MRI 
is inferior for removing artifacts and restoring fine details at 
high AFs. It is known that CS‐MRI with global sparsifying 
transforms is normally limited to the AF of 2.5 to 3.48 When 
the AF is set to 4, there exist distinct undersampling artifacts 

in the CS‐MRI results.25,30 In contrast, the CasNet performs 
consistently well in various clinical indications (see Figures 
3 and 4, and Table 2). In particular, the substantial ventilation 
defects in Figure 4A1 are correctly depicted in Figure 4D1. 
This is useful for examining structural and functional abnor-
malities in COPD.43

It should be noted that the fine details are largely regu-
larized in Figure 3, which is most likely due to the use of 
training data with various clinical indications. Minimizing 
the L2 loss between the FS and reconstructed results drives 
the CNNs to search pixel‐wise averages of plausible solu-
tions, which are typically overly smooth and have poor 
perceptual quality.49 In the future, it will be interesting to 
evaluate the performance of CasNet when training with the 
subset of ventilation images from different clinical indica-
tions, e.g., asthma, COPD.

4.3 | In vivo
As for the prospective datasets, the CasNet provides a good 
agreement with FS images. A negligible bias in VDP values 
is obtained for both the healthy subjects and asymptomatic 
smokers, suggesting the clinical potential of the CasNet in 
real accelerated acquisition.

The reconstructed images through the CasNet have higher 
SNR values than FS images in Figure 6 and Table 3. This 
can be attributed to higher FA in the prospectively undersam-
pled acquisition. The large FA results in high signal intensity 
in the k‐space center, which determines the overall SNR of 
MR images.12 This is consistent with the results previously 

Subjects FEV1/FVC (%)

VDP (%) SNR

FS CasNet FS CasNet

Healthy subjects

HS1 84.5 4.1 ± 1.1 4.7 ± 1.3 14.9 ± 1.6 24.5 ± 3.5

HS2 94.9 6.7 ± 1.3 7.2 ± 2.0 15.4 ± 2.2 49.4 ± 4.4

HS3 87.9 5.1 ± 1.6 5.6 ± 1.8 15.7 ± 1.6 52.7 ± 7.5

HS4 82.1 6.7 ± 1.1 6.3 ± 1.2 15.6 ± 1.9 47.2 ± 4.3

HS5 88.3 4.7 ± 1.0 5.0 ± 1.4 28.0 ± 2.0 50.7 ± 5.5

Mean 87.5 ± 4.8 5.5 ± 1.6 5.8 ± 1.8 18.0 ± 5.5 44.6 ± 11.8

P‐value 0.102 <0.001

Asymptomatic smokers

AS1 68.7 26.7 ± 13.9 27.8 ± 15.0 13.8 ± 1.6 34.9 ± 9.6

AS2 82.4 5.9 ± 1.4 5.4 ± 2.0 24.7 ± 2.1 50.8 ± 6.8

AS3 89.2 7.2 ± 2.1 7.6 ± 2.5 13.2 ± 3.1 43.4 ± 4.9

AS4 77.9 9.2 ± 1.8 9.5 ± 2.2 27.3 ± 3.9 49.7 ± 5.1

AS5 70.3 8.9 ± 3.3 9.7 ± 2.6 26.7 ± 3.1 46.2 ± 4.8

Mean 77.7 ± 8.5 11.6 ± 10.0 12.0 ± 10.6 21.3 ± 6.6 44.9 ± 8.6

P‐value 0.125 <0.001

T A B L E  3  Comparisons of VDP and SNR between the FS and reconstructed images through the CasNet for the healthy subjects and 
asymptomatic smokers
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reported in Ajraoui et al.11 Moreover, CNN‐based recon-
struction methods can function as a de‐noising network for 
images with low SNR, which may also result in the increase 
of SNR in the reconstructed images.50

4.4 | AF
For higher AFs (e.g., 6 or 8), we investigate the feasibility of 
the CasNet. Figure 7A displays the FS image of the 17th slice 
of the lung from a healthy volunteer. Under different AFs, 
the retrospectively undersampled results through the zero‐
filling and CasNet are displayed in Figure 7B1‐B3,C1‐C3,  
respectively. It can be found that the zero‐filling images 
not only become more blurred but also lose more fine  
details with increasing AFs (The MAE values ascend and 
the SSIM values descend). However, after the CasNet, the 
artifacts are well eliminated and the sharp structures are well 
restored, especially in the green boxes in Figure 7C1‐C3. 
Although Figure 7C3 has inferior quantitative metrics, the 
lung structure is well preserved. This means that the CasNet 
has potential for reconstructing HP gas MRI at high AFs.

It should be noted that the AF used in the latest brain MRI 
reconstruction is even up to 10.17 Nevertheless, the image size 
is 256 × 256, and the number of training data is 16,095 in that 

work (approximately 21 times larger than that used in this work). 
Therefore, the brain MRI reconstruction is effective because 
there are large number of available samples during the training 
stage. Accordingly, we will further collect massive data to train 
the reliability of the CasNet, and then achieve higher AFs.

4.5 |  Limitat ions

Although the CasNet generates promising results for HP gas 
MRI reconstruction, there are some limitations to this study. 
First, the number of good‐quality references is insufficient 
because it is difficult to acquire HP gas images with high spa-
tial resolution and SNR. However, large amounts of training 
data are required to train reliable and efficacious deep learn-
ing models. Therefore, the further work is to collect mas-
sive data with high quality. Second, zero‐filling results are 
deemed as the input of the CasNet, whose quality is deterio-
rated by undersampling artifacts. If the AF becomes larger, 
the deterioration tends to become more serious.11 In this 
way, the CasNet possibly loses fine details of the lung. This 
leads to a linchpin for our further work, for example, further  
exploiting the 3D spatial correlations from adjacent slices 
in volumetric images, using undersampled k‐space as input 

F I G U R E  7  Under different AFs, the reconstructed results are obtained using the zero‐filling and CasNet. A, 1 slice of FS images from a 
healthy volunteer. When the AFs are set to 4, 6, and 8, the corresponding reconstructed results through the zero‐filling and CasNet are displayed in 
(B1‐B3) and (C1‐C3), respectively. Magnified regions of green boxes are placed at the right bottom of the corresponding images. The MAE and 
SSIM values are also listed on the images
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and optimizing undersampling patterns in the training, com-
bining with the perceptual loss and generative adversarial 
networks.49 Third, although U‐Net is applied in the CasNet, 
other advanced network architectures such as dense convo-
lutional network51 will be compatible in the future. Fourth, 
L2 loss functions are used in the CasNet, which may not 
be optimal for undersampled HP gas MRI reconstruction. 
Additional loss functions, such as the L1 norm, SSIM, will be 
further explored. Fifth, the CasNet only focuses on variable‐
density Cartesian acquisition. In the future, a similar CNNs 
model with appropriate modifications will be extended to  
non‐Cartesian acquisition, including radial and spiral trajec-
tories. Lastly, the validity of the CasNet on prospective acqui-
sition is tested on 5 healthy volunteers and 5 asymptomatic 
smokers. Massive in vivo experiments should be done to 
demonstrate the robustness and effectiveness of the CasNet.

5 |  CONCLUSIONS

In this work, we present a CasNet for fast and accurately  
reconstructing human lung gas MRI from highly undersampled  
k‐space. The CasNet consists of a coarse net for de‐aliasing,  
and a fine net for restoring structural details within lung  
regions. Experimental results demonstrate that the CasNet is 
able to not only improve reconstruction performance but also 
have some advantages in comparisons with the baseline meth-
ods. Once the training of CasNet is completed, the reconstruc-
tion process is extremely fast (tens of ms per 2D slice), which 
enables possible real‐time reconstruction of human lung. 
Moreover, VDP values provided by the reconstructed results 
agree well with those of the reference standard. As for the pro-
spective datasets, there are no significant differences between 
the FS and reconstructed images regarding VDP term, but the 
CasNet has significantly higher SNR values. Consequently, 
the CasNet is promising in real‐time imaging of human lung 
and facilitating the study of clinical lung diseases.
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