ChemComm

View Article Online

FEATURE ARTICLE

Check for updates

Cite this: Chem. Commun., 2021, 57, 7743

Received 13th May 2021, Accepted 24th June 2021

DOI: 10.1039/d1cc02133h

rsc.li/chemcomm

1. Introduction

Magnetic resonance imaging is one of the most used medical imaging technologies for disease diagnosis and therapy assessment,¹ because it provides high-resolution images noninvasively without ionizing radiation and tissue depth limit.² As water accounts for over 60% of body weight, imaging its local concentration and relaxation states provides valuable anatomical and physiological information. Consequently, ¹H MRI using water protons as the signal source is overwhelmingly used in the clinic. However, the ubiquitous water in biological systems

Perfluoro-*tert*-butanol: a cornerstone for high performance fluorine-19 magnetic resonance imaging

Tingjuan Wu,†^a Anfeng Li,†^a Kexin Chen,^a Xingxing Peng,^a Jing Zhang,^b Mou Jiang,^c Shizhen Chen,^c Xing Zheng,*^a Xin Zhou^b*^c and Zhong-Xing Jiang^{*}*^{ab}

As a versatile quantification and tracking technology, ¹⁹F magnetic resonance imaging (¹⁹F MRI) provides quantitative "hot-spot" images without ionizing radiation, tissue depth limit, and background interference. However, the lack of suitable imaging agents severely hampers its clinical application. First, because the ¹⁹F signals are solely originated from imaging agents, the relatively low sensitivity of MRI technology requires high local ¹⁹F concentrations to generate images, which are often beyond the reach of many ¹⁹F MRI agents. Second, the peculiar physicochemical properties of many fluorinated compounds usually lead to low ¹⁹F signal intensity, tedious formulation, severe organ retention, *etc.* Therefore, the development of ¹⁹F MRI agents with high sensitivity and with suitable physicochemical and biological properties is of great importance. To this end, perfluoro-*tert*-butanol (**PFTB**), containing nine equivalent ¹⁹F and a modifiable hydroxyl group, has outperformed most perfluorocarbons as a valuable building block for high performance ¹⁹F MRI agents. Herein, we summarize the development and application of PFTB-based ¹⁹F MRI agents and analyze the strategies to improve their sensitivity and physicochemical and biological properties. In the context of PFC-based ¹⁹F MRI agents, we also discuss the challenges and prospects of PFTB-based ¹⁹F MRI agents.

> also generates high background signals, leading to difficulty in distinguishing the region of interest from its surrounding region, e.g., diseased and normal tissues. Thus, many ¹H MRI contrast agents (CAs) have been developed to enhance the visibility of the region of interest by affecting the relaxation of water.3 Longitudinal CAs decrease the longitudinal relaxation times (T_1) and brighten the region, while transverse CAs reduce the transverse relaxation times (T_2) and darken the area. Although widely used in the clinic, CAs still suffer from many drawbacks, such as double imaging process, high dose, and toxicity.⁴ Furthermore, it is unreliable for CA-assisted ¹H MRI to quantify the targets of interest in biological systems, such as drugs, biomolecules, nanoparticles, etc., because CAmodulated water ¹H signals are indirectly related to the concentration of targets.⁵ On the other hand, direct quantification with ¹H signals of targets in biological systems is hampered by weak ¹H signals of targets, strong background signals, and overcrowded ¹H signals within a chemical shift range of about 20 ppm, which severely mask the ¹H signals of targets.

> ¹⁹F MRI has emerged as a valuable complement to ¹H MRI, which overcomes many drawbacks of ¹H MRI and gains extensive application as a quantification and tracking technology.^{5–7} (1) ¹⁹F is a nucleus of choice for MRI, which is the second most sensitive stable nucleus for MRI with 100% natural abundance

^a Group of Lead Compound, Department of Pharmacy,

Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China. E-mail: zhengxing9166@sohu.com

^b Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China. E-mail: zzjiang@whu.edu.cn

^c State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Wuhan 430071, China. E-mail: xinzhou@wipm.ac.cn

[†] The authors contributed equally to this work.

and 83% sensitivity of ¹H. (2) Fluorinated organic compounds (FOCs) have a wide chemical shift range of about 250 ppm and the chemical shift is sensitive to the local environment, molecular structure, and target interactions, which lays the foundation for many valuable ¹⁹F MRI probes.^{8,9} (3) FOCs comprise a huge family, including 20% of marketed drugs,¹⁰ 16% of marketed agrochemicals,¹¹ and numerous fluorinated chemicals,¹² which provide a variety of agents for ¹⁹F MRI. (4) FOCs are absent from most biological systems. In humans, only a trace of fluorinated inorganic compounds exists in bone and teeth, which regular ¹⁹F MRI instruments can hardly detect due to very short T_2 . Thus, there is no endogenous ¹⁹F signal in biological systems, making ¹⁹F MRI an ideal "hot spot" imaging technology to track targets. (5) ¹⁹F signals are solely originated from fluorinated agents and their intensities are directly proportional to local ¹⁹F concentrations, facilitating the accurate ¹⁹F MRI quantification of fluorinated targets.⁵

Although only four years younger than ¹H MRI,^{13 19}F MRI has not been used in the clinic mainly due to the lack of suitable ¹⁹F MRI agents. A low millimolar concentration of effective local ¹⁹F (¹⁹F_{eff}) is usually required for ¹⁹F MRI to generate images. Notably, ${\rm ^{19}F_{eff}}$ refers to the portion of ¹⁹F generating ¹⁹F images, not all ¹⁹F in a FOC (¹⁹F_{total}). Due to the non-equivalent arrangement of ¹⁹F, most FOCs give multiple ¹⁹F signals with a wide chemical shift distribution.¹⁴ During ¹⁹F MRI, the most prominent ¹⁹F peak is usually selected for 19F MRI to improve the signal intensity and sensitivity. In contrast, the rest of the ¹⁹F peaks don't contribute to ¹⁹F MRI but generate chemical shift imaging artifacts. So, instead of increasing ${}^{19}\mathrm{F}_{\mathrm{total}}$ or fluorine content (${}^{19}\mathrm{F\%})$ in ¹⁹F MRI agents, it is better to improve signal intensity by avoiding ¹⁹F signal splitting and increasing ¹⁹F_{eff}. Therefore, ideal ¹⁹F MRI agents should have as many ¹⁹F_{eff} as possible and a single ¹⁹F peak.

2. ¹⁹F MRI agents

2.1. Perfluorocarbons directly used in ¹⁹F MRI

Since 1977, many perfluorocarbons (PFCs) have been used in ¹⁹F MRI (Fig. 1), including perfluorooctyl bromide (PFOB), perfluorononane (PFN), perfluorotributylamine (PFTBA), perfluoropropane (PFP), and perfluorodecalin (PFD). Although these PFCs have a high ¹⁹F_{total}, they give multiple ¹⁹F signals with quite different chemical shifts. During ¹⁹F MRI data collection, the acquisition bandwidths are usually set to cover only the strongest signal(s) from the ¹⁹F_{eff}, marked in red in Fig. 1, to achieve the high signal-to-noise ratio (SNR). So, these PFCs have a low $^{19}F_{\rm eff}.$ For example, only 4 $^{19}F_{\rm eff}$ out of 18 $^{19}F_{\rm total}$ in PFD may contribute to ¹⁹F MRI because the ¹⁹F signals are split and distributed in a wide chemical shift range. Then, PFCs with all equivalent 19F were employed in 19F MRI, including perfluoro-15-crown-5 (PFCE) and hexafluorobenzene (HFB). Later, perfluoropolyethers (PFPE) with many pseudo-equivalent ¹⁹F were used in ¹⁹F MRI by Ahrens et al.¹⁵

Fig. 1 Structures of fluorinated chemicals used in ¹⁹F MRI.

It is noteworthy that these PFCs were not designed for ¹⁹F MRI, which suffer from many drawbacks in ¹⁹F MRI. (1) Because PFCs are very hydrophobic and immiscible in water, PFCs are usually formulated into water-soluble nanoparticles (NPs) as ¹⁹F MRI agents, which involves complex formulation and characterization processes.¹⁶ (2) PFCs usually have severe organ retention, and they tend to accumulate in the liver, spleen, and lungs and stay in these organs for many months.^{17,18} The long *in vivo* resident times lead to strong background signals and misleading information for further ¹⁹F MRI study on the same object. Although PFCs are biologically inert, severe organ retention may also lead to biological problems like tissue hypoxia.^{19,20} (3) It is difficult to modify these PFCs for multifunction or better physicochemical properties due to the lack of modifiable groups and very abnormal reactivity.

2.2. Fluorinated building blocks for ¹⁹F MRI

The design and synthesis of novel ¹⁹F MRI agents with high sensitivity and suitable physicochemical and biological properties overcame many drawbacks of PFC agents. Because direct fluorination involves low yield and harsh reaction conditions, indirect synthesis of ¹⁹F MRI agents from fluorinated building blocks is a better strategy. In 2007, perfluoro-tert-butanol (PFTB, Fig. 1) was first identified by Yu and Jiang as an ideal building block for ¹⁹F MRI agents.²¹ With a high ¹⁹F% of 72.4%, PFTB gives a singlet ¹⁹F NMR peak from 9 equivalent ¹⁹F. Furthermore, under the influence of 3 electron-withdrawing CF₃-groups, the OH-group in **PFTB** is very acidic ($pK_a = 5.33$),²² which makes PFTB a good nucleophile for S_N2 substitution during ¹⁹F MRI agents' synthesis.²¹ Later, perfluoropinacol 1 with 12 equivalent ¹⁹F and 2 acidic OH groups (pK_{a1} : 5.95, pK_{a2} : 10.43)22 was employed as a building block for water-soluble and sensitive ¹⁹F MRI agents, but the agents suffered from acute toxicity.²³ Recently, iodobenzene 2 with 12 equivalent ¹⁹F and benzoic acid 3 with 6 equivalent ¹⁹F were employed as the key building blocks for ¹⁹F MRI-traceable peptides^{24,25} and dendrimers.^{26–28} Among these, **PFTB** is the most promising one due to its easy availability and modification, and high F% and ¹⁹F_{eff}.

3. Synthesis of PFTB-¹⁹F MRI agents

3.1. Property and preparation of PFTB

PFTB is a volatile liquid with a low boiling point of 45 $^{\circ}$ C and a high density of 1.693 g mL⁻¹. It has acute toxicity and causes skin and eye irritation, probably due to its acidity and volatility. However, **PFTB** reacts with NaOH solutions to give water-soluble NaOC(CF₃)₃ in quantitative yield, which is a non-volatile and stable white powder, much easier to store and handle than **PFTB**.

Although **PFTB** is commercially available, there are many methods for laboratory preparation (Scheme 1). In 1965, **PFTB** was first synthesized by oxidation of perfluoro-2-nitroso-2-methylpropane 4 by Dyatkin *et al.*²⁹ Then, Filler *et al.* developed a nucleophilic addition–fluorination method, but it suffered from harsh reaction conditions and low yield.³⁰ Later, Pavlik *et al.* prepared **PFTB** by treating perfluoroisobutene oxide **6** with HF in the presence of SbF₅.³¹ In 1992, Kotun *et al.* developed a convenient nucleophilic addition method for **PFTB**.³² Kotun's method avoided harsh reaction conditions and dangerous chemicals, and was adopted in this lab for 100 gram scale preparation of **PFTB**.

3.2. Strategies to introduce PFTB into ¹⁹F MRI agents

Due to its high chemical and biological stability, the ether bond is very fit for introducing **PFTB** into ¹⁹F MRI agents (Scheme 2). **PFTB** and NaOC(CF₃)₃ are excellent nucleophiles and thus suitable substrates for Williamson ether synthesis of aliphatic perfluoro-*tert*-butoxylated (PFTB-) agents.^{33–39} (1) With good solubility in THF, NaOC(CF₃)₃ is a convenient reagent for nucleophilic ring-opening of macrocyclic sulfate 7 in THF to give PFTB-tetraethylene glycol **8** in high yield.³⁸ (2) For primary alcohols, the Mitsunobu reaction with **PFTB** is an effective method to prepare the corresponding PFTB-ethers under mild conditions.^{21,39,40} Performing the reaction in a sealed vessel and in the presence of 4 Å molecular sieves promotes the formation of PFTB-ethers.²¹ (3) For aromatic substrates, thermal decomposition of aryldiazonium salts in **PFTB** is the most used strategy to incorporate the PFTB-group.^{41,42} However, it

Scheme 1 Methods for PFTB preparation.

involves the explosive aryldiazonium salt intermediates and expensive **PFTB** as the reaction solvent. (4) To address these issues, a diaryliodonium salt-based strategy was recently developed by Zhao *et al.*⁴³ It is noteworthy that, in contrast to *tert*-butyl ethers, PFTB-ethers are stable to Brønsted acids and Lewis acids, such as HCl, TFA, and $AlCl_3$,^{21,44} because of the strong electron-withdrawing nature of the **PFTB**-group.

4. Application of PFTB-¹⁹F MRI agents

4.1. PFTB-containing bioactive agents

Fluorination of bioactive agents is a well-known drug discovery strategy,⁴⁵ which has delivered over 20% of marketed drugs.¹⁰ Fluorination can modulate the physicochemical and biological properties of bioactive agents,^{45,46} and facilitate their ¹⁹F MRI/NMR investigation.^{8,9} Comparing fluorinated drugs on the market,¹⁰ PFTB-bioactive agents are advantageous for ¹⁹F MRI due to their high ¹⁹F_{eff}. Many PFTB-bioactive agents have been discovered and their ¹⁹F MRI/NMR studies have greatly promoted pharmaceutical, biological and pathological studies (Fig. 2).^{41,47-54}

Monitoring the biotransformation of PFTB-substrates to dopamine by aromatic acid decarboxylase (AADC) with ¹⁹F MRI/NMR may promote the treatment and diagnosis of Parkinson's disease and brain tumors. PFTB-agents **15–17** have been identified as suitable AADC substrates, but no detailed ¹⁹F MRI/NMR of the biotransformation was disclosed (Fig. 2).^{48–50} Notably, PFTB-probe **18** was developed for early diagnosis of Alzheimer's disease with ¹⁹F MRI, while no ¹⁹F NMR signal was detected from probe **18**-treated brain tissue.⁴¹ In these cases, the strong hydrophobic interaction between PFTB-agents and brain tissue severely shortened the T_2 and significantly reduced the ¹⁹F signal intensity.

As hypoxia is a pathophysiological characteristic of solid tumors, the substrates of reductases may be tumor-targeted therapeutics or imaging probes.⁵⁵ PFTB-indolequinone (IQ-F) probe **19** was developed as a substrate for reductases expressed in tumor cells (Fig. 2).⁵¹ In tumor cells, the reductases catalyzed

the one-electron reduction of probe **19** into IQ accompanied by the release of **PFTB**. Because probe **19** and **PFTB** had distinctive ¹⁹F NMR signals ($\Delta \delta \approx 4$ ppm), the biotransformation process was quantitatively monitored by ¹⁹F NMR and chemical shiftselected ¹⁹F MRI, which quantified the consumption of probe **19** and the release of **PFTB** under hypoxic conditions (Scheme 3). Notably, unless the ether bond is cleaved, the ¹⁹F NMR chemical shift changes of PFTB-ethers are not sensitive (<1 ppm) to chemical modifications, biotransformation, or the local environment.

Cancer stem cells (CSCs) play essential roles in cancer metastasis and recurrence. The development of selective CSC inhibitors as probes to monitor CSCs with ¹⁹F MRI/NMR is of great importance to cancer metastasis intervention and therapy. Salinomycin is a cheap natural product with high selective inhibition towards CSCs.⁵⁶ PFTB-salinomycin derivatives 20 and 21 were developed by Jiang et al. as promising cancer drug candidates, which showed 2- and 4-times higher potency towards human breast cancer MCF-7 cells than salinomycin, respectively (Fig. 2).^{52,53} With a strong singlet ¹⁹F NMR peak, PFTB-salinomycin 20 and 21 generated ¹⁹F MRI at a low concentration of 5.6 mM (Fig. 3). In this case, the selective introduction of a PFTB-group into salinomycin enhanced the anti-cancer potency and provided ¹⁹F MRI/NMR capability for potential CSC research, molecular mechanism study, and cancer therapy. The strategy was recently adopted by Ma et al. to develop PFTB₃-4-anilinoquinazoline 22 and 23 as potential ¹⁹F MRI-traceable EGFR tyrosine kinase inhibitors (Fig. 2), which were detected by ¹⁹F MRI at 10 mM.⁵⁴

The development of PFTB-bioactive agents for in vivo ¹⁹F MRI studies is very challenging because it requires a good balance between bioactivity and ¹⁹F MRI sensitivity. (1) The bioactivity of an agent is mainly determined by the delicate interactions between the agent and its target, which is closely related to its chemical structure and physicochemical properties. As a very bulky and highly hydrophobic group, the PFTB-group would considerably impact the bioactivity and pharmacokinetics. (2) PFTB-bioactive agents should generate ¹⁹F MRI within its safety window. The *in vivo* concentration of bioactive agents is usually in the micromolar or lower range. On the other hand, the ¹⁹F_{eff} concentration for ¹⁹F MRI is generally in the low millimolar range, which is far beyond the safety window of most bioactive agents. This is probably the main reason there are so many fluorinated drugs on the market while there are so few in vivo 19F MRI/NMR studies on them.

Scheme 3 Monitoring the reduction of **19** in A549 cells under hypoxia and aerobic conditions (a) with ¹⁹F NMR (b), **19** signal-selected ¹⁹F MRI (c) and **PFTB** signal-selected ¹⁹F MRI (d).⁵¹ Reproduced from ref. 51 with permission of American Chemical Society 2009.

Fig. 3 Cytotoxicity (a) and ¹⁹F MRI phantom images (b) of PFTB-salinomycin derivatives **20** and **21**.^{52,53} Reproduced from ref. 52,53 with permission of Royal Society of Chemistry 2016 and Elsevier 2018.

4.2. PFTB-containing amino acids, peptides and proteins

Monitoring peptides and proteins with imaging technologies is crucial for understanding biological processes and developing diagnostic and therapeutic agents. Thus, introducing fluorinated amino acids (AAs) or tags into peptides and proteins and thus monitoring them with ¹⁹F NMR/MRI has become a desirable strategy.^{57–59} Notably, besides providing reporter groups for ¹⁹F MRI/NMR studies of peptides and proteins dynamics, fluorinated AAs usually enhance the chemical, thermal, and proteolytic stability, modify the folding profile, and impact the biological activity.^{60–62}

Compared to extensive studies on monofluorinated, gemdifluorinated, and trifluoromethylated AAs since the 1970s, there had been no report on PFTB-AAs until Yu and Jiang reported the synthesis and application of PFTB₂-β-AA 24 in 2007 (Fig. 4).⁶³ With high hydrophobicity and ¹⁹F NMR sensitivity, PFTB₂-β-AA 24 was developed as a ¹⁹F MRI reporter and pharmacokinetic modulator for peptidic pharmaceuticals. As mentioned in the case of PFTB-bioactive agents, it is challenging to generate ¹⁹F MRI with PFTB-peptides in biological systems, while the low concentration PFTB-peptides may still facilitate ¹⁹F NMR study. (1) PFTB-AAs are sensitive ¹⁹F NMR probes to monitor the target binding. L-O-PFTB-homoserine 25 (Fig. 4) was synthesized by Marsh et al. as a ¹⁹F NMR probe for antimicrobial peptide MSI-78.64 After incorporating 25 into the 1-, 6-, and 7-position of MSI-78, the resulting PFTB-peptides gave chemical shift changes ($\Delta\delta$ up to 0.41 ppm) and a significant increase of R_2 (1/ T_2 , up to 8.5 times) upon binding to bicelles, which was monitored by ¹⁹F NMR at 5 µM with 128 scans. L-O-PFTB-homoserine 25 was also incorporated into the α-helical LXXLL short linear motif of estrogen receptor (ER) coactivator peptides by Zondlo et al.65 The PFTB-peptides exhibited high bioactivity and the process of binding was monitored by ¹⁹F NMR. (2) PFTB-AAs are valuable conformational modifiers and probes for peptides and proteins. Zondlo et al. synthesized (2S,4R)-PFTB-4-hydroxyproline 26 and (2S,4S)-PFTB-4-hydroxyproline 27 (Fig. 4) and incorporated them into α-helical and polyproline helix peptides.^{66,67} The conformational

Fig. 4 Structures of PFTB-amino acids, peptides, and tags

species showed distinct conformational preferences and ¹⁹F NMR peaks ($\Delta \delta \approx 0.1$ ppm), which were sensitively detected by ¹⁹F NMR within 5 min at 200 nM (Scheme 4a and b).⁶⁷ Recently, **26** and **27** were employed as sensitive conformational responsive ¹⁹F NMR probes for real-time and quantitative monitoring of the phosphorylation process of protein kinases PKA in HeLa cell extracts (Scheme 4c).⁶⁸ Notably, not all isomers of PFTB-peptides would give different ¹⁹F NMR peaks. For example, Zondlo *et al.* synthesized PFTB-tyrosine **28** and incorporated it into a tetrapeptide, and it was observed that the *cis*- and *trans*-rotamers of the peptide gave identical ¹⁹F signals (Fig. 4).⁶⁹

PFTB₅-peptide **29** was recently developed by Jiang *et al.* as an "add-on" module to turn regular liposomes into fluorescence (FL) and ¹⁹F MRI dual imaging-traceable theranostics (Fig. 4).⁷⁰ Peptide **29** had relatively short ¹⁹F relaxation times (T_1 542 ms, T_2 152 ms) and was imaged by ¹⁹F MRI at 0.11 mM (Fig. 5a), which showed much higher ¹⁹F MRI sensitivity than the 3-labeled lysine counterpart with a detectable concentration of 0.33 mM under the same conditions.²⁴ Peptide 29 contained pseudo-symmetrical PFTB-groups, which emitted a single ¹⁹F peak in methanol, but multiple close peaks in water and 2 close peaks after self-assembly onto the doxorubicin (DOX)loaded liposome (L1, Fig. 5b). The signal splitting indicated that the 5 PFTB-groups were homogeneous in organic solvents and heterogeneous in water after the self-assembly because they had pretty different distances to the hydrophilic PEG terminal and thus different hydrophilic-hydrophobic environments in the self-assembled nanoparticles. Liposome L1 had a diameter of 70.6 nm and thermo-responsive drug release property (Fig. 5c-e). In liver cancer HepG2 cell xenograft nude mice, liposome L1 showed improved therapeutic efficacy compared to doxorubicin and gave FL/19F MRI dual imaging for in vivo drug tracking. In this case, triple enrichment of ¹⁹F_{eff} facilitated *in vivo* ¹⁹F MRI: (1) integrating 54 pseudosymmetric ¹⁹F into peptide 29, (2) self-assembly of multiple 29

Scheme 4 ¹⁹F NMR of Ac-GPPXPPGY-NH₂ peptides (a, X = **26**; b, X = **27**), and time-dependent ¹⁹F NMR detection of PKA activity in HeLa cell extracts (c).^{67,68} Reproduced from ref. 67 licensed by CC-BY and ref. 68 with permission of American Chemical Society 2020.

Fig. 5 ¹⁹F MRI phantom images (a) and ¹⁹F NMR (b, upper in water, lower in **L1**) of peptide **29**, photo and TEM image (c) and thermo-responsive drug release of **L1** (d), tumor growth curve (e), collected tumors at the end of the study (f) and ¹⁹F MRI (g) of liposome **L1** treated mice.⁷⁰ Reproduced from ref. 70 with permission of Wiley 2019.

onto liposome L1, and (3) targeted delivery of liposome L1 to the tumor region.

Labeling proteins with PFTB-tags may facilitate their ¹⁹F NMR study in biological systems. In 2013, Bruce et al. developed PFTBtags 30 and 31 for labeling albumin through Cys-34 (Fig. 4).71 PFTB-albumin showed dramatically shortened T_1 compared to PFTB-β-mercaptoethanol adducts (from 1520 ms to 630 ms for 30, from 1470 ms to 680 ms for 31), while the T_2 of PFTB-albumin was too short to be measured. Although long and flexible linkers between PFTB and albumin were employed, PFTB-albumin gave 2 ¹⁹F NMR peaks, which was attributed to the conjugation-induced diastereoisomer formation according to the authors. Because albumin can bind hydrophobic molecules, the signal splitting may be attributed to "free and bound" PFTB-tags. Actually, monitoring PFTB-proteins with ¹⁹F NMR is also very difficult. First, it is difficult to achieve sensitive ¹⁹F NMR by PFTB-labelling without changing protein bioactivity, solubility, high order structures, etc. Second, the large sizes of PFTB-proteins would dramatically shorten their T_2 and thus hamper ¹⁹F NMR detection.

4.3. PFTB-containing polymers

Polymerizing fluorinated monomers into polymeric ¹⁹F MRI agents is a convenient way to assemble many ¹⁹F_{eff} without step-by-step synthesis. Although various fluorinated polymers, such as polyvinyl fluoride (PVF), polytetrafluoroethylene (PTFE), and polyvinylidene fluoride (PVDF), have been widely used as high-performance materials, they are not fit for ¹⁹F MRI because they are water-insoluble solids with very short T_2 . So, polymeric ¹⁹F MRI agents should have suitable physicochemical properties, such as liquid with proper T_2 , convenient formulation or water-soluble, *etc.* Recently, many fluorinated polymers have been developed for ¹⁹F MRI.^{72–75} As far as we know, the first PFTB-polymers **32** and **33** were prepared by Riotman and Pittman for the wetting property study in 1972

Fig. 6 Structures of PFTB-polymers.

(Fig. 6), 76 while they were amorphous solids and not fit for $^{19}\mathrm{F}$ MRI.

Polyethylene glycols (PEGs) are water-soluble and biocompatible polymers, which are extensively used in biomedicine.^{77,78} Modifying PEGs with **PFTB** may be a convenient strategy for water-soluble and biocompatible ¹⁹F MRI agents. In 2013, Benaglia *et al.* synthesized PFTB₂-PEGs **34–36** and identified **35** as readily available and low-cost ¹⁹F MRI agents (Fig. 6).⁷⁹ Interestingly, agent **36** with the lowest ¹⁹F% was not detectable by ¹⁹F MRI in water, in which the ¹⁹F%-controlled self-assembly may play a role.⁸⁰ Notably, these PFTB₂-PEGs are polydisperse mixtures, which may lead to difficulties in purification, characterization, accurate quantification, *etc.* These issues were avoided by using monodisperse PEGs.²³

PFTB-amphiphilic polymers are attractive self-assembled ¹⁹F MRI-traceable drug delivery vehicles. In 2014, Mecozzi *et al.* prepared PFTB-PEGs miktoarm amphiphiles **37** and **38** (Fig. 6).⁸¹ In contrast to their linear perfluoroalkylated amphiphilic counterparts, amphiphiles **37** and **38** aggregated with less kinetic stability and a low paclitaxel loading capability of 1%, probably due to the weak interactions of PFTB-groups. A later study showed that PFTB₃-PEGs **39** and **40** formed much more stable and monodisperse sevoflurane-loaded emulsions than PFTB-PEGs **41** and **42** due to the increased entanglement of PFTB₃-groups (Fig. 6).³⁷ With favorable magnetic resonance properties (T_1 530 ms, T_2 110 ms; detected by ¹⁹F MRI at 1 mM)

and drug encapsulation capability, PFTB–PEGs **39** may find application in ¹⁹F MRI-traceable drug delivery. Notably, in the aggregates, the ¹⁹F of 39 and 40 showed higher mobility than the ¹⁹F of a control amphiphile $CF_3(CF_2)_5(CH_2CH_2O)_{22}$ Me, which promoted high ¹⁹F NMR signal intensity. The high mobility of the PFTB-group is crucial for the rational design of NP-based ¹⁹F MRI agents, which was further illustrated by a diffusion study on self-assembled dendrimer **43** and polymer **44** with PFTB-groups as ¹⁹F NMR diffusion labels (Fig. 6).^{82–84} In the self-assembled NPs, the relatively short spacer in **43** and **44** compromised the ¹⁹F NMR detection by reducing rotational mobility and severely shortening the T_2 .

The host-guest interaction between crown ethers and amines may be useful in drug delivery. For example, Tuba *et al.* synthesized PFTB-copolymers **45** and **46** as hosts to complex amine-containing anti-inflammatory drug Mesalazine (Fig. 6).^{85,86} The complex exhibited a pH-responsive drug release profile, which may enable ¹⁹F MRI-traceable targeted and sustained drug delivery for the inflamed lower gastrointestinal tract. To improve the water solubility, Kilbinger *et al.* developed water-soluble copolymers **47** and **48** for ¹⁹F MRI through dihydroxylation of the olefin bonds, introduction of long and water-soluble linkers, or quaternization of the tertiary amines (Fig. 6),⁸⁷ which also improved ¹⁹F NMR signal-to-noise ratios (SNRs) by enhancing the rotational mobility of the PFTB-groups.

Measurement of local partial pressure of oxygen (pO_2) is essential for pathological studies and better disease treatment. As a paramagnetic biomarker, oxygen has a notable impact on the T_1 of ¹⁹F, *i.e.*, the higher the local pO_2 , the shorter the T_1 of ¹⁹F.⁸⁸ In 2020, Leibfarth *et al.* developed water-soluble fluorinated copolymers **49–51** as oxygen-sensitive ¹⁹F MRI agents (Fig. 6).⁸⁹ Among the copolymers, PFTB-copolymers **51** showed a high ¹⁹F MRI sensitivity of 220 mM and the highest pO_2 sensitivity of 240 × 10⁻⁵ mmHg⁻¹ s⁻¹ (Fig. 7a–d). Furthermore, increasing the PFTB-monomer contents in copolymers **51** further increased the pO_2 sensitivity (Fig. 7d).

4.4. PFTB-containing dendrimers

Dendrimers are valuable scaffolds for high-performance ¹⁹F MRI agents. (1) Dendrimers contain many symmetrical and pseudo symmetrical positions, which are ideal for assembling multiple ¹⁹F_{eff} for sensitive ¹⁹F MRI. For example, Jiang et al. developed a dendritic 19F MRI agent with 540 pseudosymmetrical ¹⁹F from building block 2, which generated ¹⁹F MRI at unprecedented 18.5 µM.²⁶ PFTB is a valuable building block for dendritic 19F MRI agents, from which Yu et al. conveniently prepared PFTB₃-oils 52-54 and surfactants 55-58 as potential ¹⁹F MRI agents (Fig. 8).²¹ Based on this work, PFTB₄-dendrimer 59 was prepared by Resnati et al. (Fig. 8).⁴⁰ Recently, a proportionate branching strategy was developed for a defect-free PFTB₂₇-dendrimer 60, which had 243 equivalent ¹⁹F from 27 PFTB groups and emitted a sharp ¹⁹F peak (Fig. 8).⁹⁰ (2) Compared to polymers, dendrimers have accurate structures and their properties can be quantitatively fine-tuned by precise structure modification. With 4 generations of

Fig. 7 ¹⁹F MRI phantom images (a) and SNR (b) of copolymers **49–51**, plot of Δr_1 versus pO_2 of **49–51** (c) and **51** with 10–60% fluorinated monomer contents (d).⁸⁹ Reproduced from ref. 89 with permission of Wiley 2020.

PEG-dendrons as biocompatibility and solubility enhancers, PFTB₃-dendrimers **61–64** were efficiently synthesized through a fluorous mixture synthesis (Fig. 8).⁹¹ The physicochemical properties of dendrimers **61–64** were accurately manipulated, from which dendrimer **63** with high ¹⁹F MRI sensitivity, biocompatibility and water solubility was identified as a stable and rapidly excreted ¹⁹F MRI tracer (Fig. 9).⁴⁴ Dendrimer **63** is also a valuable ¹⁹F MRI kinetic probe to obtain the kinetics in major organs with fairly high spatial and temporal resolution.⁹² (3) Dendrimers have peculiar 3D structures. Unlike most amphiphiles, dendrimer 73 undergoes intramolecular conformational transition instead of self-association at high concentrations (Fig. 9),^{93–95} which may be useful for ¹⁹F MRI-traceable concentration-triggered drug release.

Introducing PFTB₃-dendrons into fluorophores can provide complementary dual imaging agents with highly sensitive FL imaging and tissue depth limit-free ¹⁹F MRI, but also reduce the aggregation tendency and significantly improve the FL performance. Among the PFTB₃-fluorophores **65–71b** (Fig. 8),^{96–101} PFTB₃-BODIPY **68** was employed as a ¹⁹F MRI/FL dual imaging agent in a mouse *post-mortem*.⁹⁸ It was found that the π – π stacking in BODIPY **70a** was completely avoided by the bulky PFTB₃groups.¹⁰⁰ Although these PFTB₃-fluorophores have dual imaging capability, their relatively long relaxation times and poor water solubility severely limited their *in vivo* application.

PEGylation of PFTB-dendrimers can significantly improve their solubility and biocompatibility.^{21,26,38,91} Recently, Jiang *et al.* developed a reductive dimerization strategy for efficient preparation of PFTB₆-dendrimer 72 as a promising ¹⁹F MRI agent (Fig. 8).¹⁰² With 54 ¹⁹F_{eff} and 6 octaethylene glycol moieties, dendrimer 72 is highly ¹⁹F MRI sensitive, watersoluble, biocompatible, and capable of self-assembly into highly monodisperse NPs (Fig. 10).

Fig. 9 ¹⁹F MRI phantom images (a), ¹⁹F NMR signal intensity decay in mice with time (b), and ¹⁹F MRI images (c) of dendrimer **63** in mice, and pictorial illustration of concentration-dependent conformation changes of PFTB–dendrimer **73** (e).^{44,93} Reproduced from ref. 44 with permission of Wiley 2009.

Fig. 10 ¹⁹F MRI phantom images (a), biocompatibility assay (b), and dynamic light scattering (c) of PFTB₆-dendrimer **72**.¹⁰² Reproduced from ref. 102 with permission of American Chemical Society 2020.

4.5. PFTB-containing nanoparticles

Modifying the NP surface with PFTB-agents or encapsulating PFTB-agents in NPs can conveniently accumulate a large number of ¹⁹F_{eff} for ¹⁹F MRI. The former involves chemical bond formation, while the latter uses physical means. For the former, a notable issue is the ¹⁹F signal loss caused by short T_2 , which is usually a result of the limited mobility of ¹⁹F as previously mentioned.¹⁰³ The limited mobility of ¹⁹F in PFTB–NPs may be caused by the short or rigid linker of PFTB-groups, tight packing of PFTB-groups, large NP size, *etc.* Thus, delicate PFTB-agents and NP design is crucial for PFTB–NP-based ¹⁹F MRI agents. Many PFTB–NPs have been developed, which can be categorized into the following four categories.

4.5.1. Soft NPs with a PFTB-core. Encapsulation of waterinsoluble PFTB-agents in NPs with polymers or phospholipids is a convenient strategy for emulsion and micelle-based ¹⁹F MRI agents. (1) PFTB₄-dendrimer 59 was formulated with lecithin into stable and highly ¹⁹F MRI sensitive nanoemulsion (d = 215 nm),⁴⁰ which effectively labelled dendritic cells (DCs) with a ¹⁹F MRI detection threshold of $9-10 \times 10^3$ DCs per voxel. In mice, 2×10^6 DCs were sensitively tracked by ¹⁹F MRI with a data collection time of 10 min. Recently, PFTB₃-dendron 10, ligand 74 and BODIPY were formulated with lecithin into paramagnetic nanoemulsion (d = 195 nm) for sensitively tracking RAW264.7 cells with ¹⁹F MRI/FL dual imaging (Fig. 11a-c).¹⁰⁴ The ¹⁹F MRI sensitivity was improved by unifying the ¹⁹F signals of **10** and 74 with the same PFTB₃-dendron and reducing the relaxation times by the ligand 74-Fe³⁺ complex. (2) PFTB₄-dendrimer 59 was co-assembled with fluorinated PEG, CF₃(CF₂)₁₂CH₂O(CH₂- $CH_2O_{44}Me$, into micelles (d = 20 nm) for sensitive tumor detection, which showed high biocompatibility, stability, and ¹⁹F MRI sensitivity.¹⁰⁵ In colon cancer mice, about 3.6% of the micelles were detected and quantified in the tumor region by ¹⁹F MRI. (3) PFTB₃-cyanine 69 was formulated into polymeric NPs (d = 130 nm) with poly(lactic-co-glycolic acid) (PLGA) as a ¹⁹F MRI/FL dual imaging agent.¹⁰¹ The polymeric NPs were employed to label and quantify mesenchymal stem cells (MSCs) with ¹⁹F MRI/FL dual imaging. The labelled MSCs were quantitatively tracked with dual imaging in mice and monitored with ¹⁹F MRI in a traumatic

Fig. 11 Structure of PFTB₃-ligand **74** (a), T_1/T_2 -weighted ¹⁹F MRI phantom images (b) and mouse images (c, subcutaneously injected with PFTB₃-NP-labelled RAW264.7 cells, left without Fe³⁺ (Eml-5), right with Fe³⁺ (Eml-6), upper T_1 -weighted, lower T_2 -weighted); structure of the fractal PLGA-NPs (d) and their selective excitation "two color" ¹⁹F MRI (e).^{104,106} Reproduced from ref. 104 with permission of Royal Society of Chemistry 2018 and ref. 106 licensed by CC-BY.

brain injured (TBI) mouse model. (4) **PFCE** and PFTB₄–dendrimer **59** was formulated with PLGA into polymeric NPs with a fractal structure (d = 200 nm),¹⁰⁶ which generated "two-colour" ¹⁹F MRI through a chemical shift selective excitation strategy and facilitated simultaneous tracking of 2 targets with ¹⁹F MRI (Fig. 11d and e).

4.5.2. Soft NPs with PFTB-surface. To simplify the development of multifunctional NPs, PFTB-amphiphiles 75-78 were developed by Jiang et al. as convenient "add-on" modules (Fig. 12a), 107-110 which self-assembled onto the surface of emulsions or liposomes and provided them with ¹⁹F MRI, ¹²⁹Xe hyper CEST, FL, and photodynamic therapy (PDT) capabilities. Modules 75-78 contain PFTB3-dendrons as the ¹⁹F signal source, M-PEG-dendrons as the biocompatibility and solubility enhancer, and a functional core. (1) Module 75 with a trimesic acid core was self-assembled onto the doxorubicin (DOX)-loaded liposome, turning it into a ¹⁹F MRItraceable theranostic agent,¹⁰⁷ which was sensitively detected by ¹⁹F MRI at 10 µM DOX, corresponding to 5 mM ¹⁹F. The PFTB-theranostics enabled the first in vivo ¹⁹F MRI tracking of anticancer drugs at a therapeutic dose. (2) Module 76 with a BODIPY core was emulsified with perfluorohexane into multifunctional theranostics for ¹⁹F MRI/near infrared (NIR)/photoacoustic (PA)-guided cancer PDT.¹⁰⁸ The fluorous interaction between module 76 and perfluorohexane significantly improved the photodynamic effect and NIR capability by relieving the aggregation-induced self-quenching of BODIPY. Notably, tumor hypoxia was also relieved by the oxygen delivery capability of the fluorinated NP. (3) Modules 77 and 78 were employed to encapsulate PFTB3-dendron 10 as multimodal imaging and PDT nanoemulsion.^{109,110} To improve the ¹⁹F MRI sensitivity, modules 77 and 78, and dendron 10 contained the same $PFTB_3$ -dendron and emitted a unified ¹⁹F signal. In this case, multiple "add-on" modules provide the NP with multiple functions besides ¹⁹F MRI: module 77 with a cryptophane-A core for highly sensitive ¹²⁹Xe hyper-CEST MRI and module 78 with a porphyrin core for FL and

Fig. 12 Structures of "add-on" modules **75–78** (a), FL (b), ¹⁹F MRI (c), and ¹²⁹Xe hyper CEST MRI (d) images of Eml-RGD-treated A549 cells and MCF-7 cells, *in vivo* FL (e) and tumor ¹⁹F MRI (f) of Eml-RGD-treated A549 tumor mice, and tumor growth graph of A549 tumor mice after treatments (g).¹⁰⁹ Reproduced from ref. 109 with permission of Royal Society of Chemistry 2020.

PDT. After further surface modification with the c(RGDyC) peptide, the NP (Eml-RGD) became a ¹⁹F MRI/¹²⁹Xe hyper-CEST MRI/ FL multimodal imaging-guided and tumor-targeted highly efficient PDT theranostic agent in xenograft A549 tumor mice (Fig. 12b–g). In these cases, the high ¹⁹F_{eff} in modules **75–78**, the unified ¹⁹F frequency, and the high mobility of ¹⁹F in the NPs facilitated their high ¹⁹F MRI sensitivity.

4.5.3. PFTB-silica-based hard NPs. Compared to PFTBmodified soft NPs, PFTB-silica NPs are more stable and much easier to functionalize on the surface. PFTB-agents can be either encapsulated in the hollow core or attached on the surface. (1) When encapsulated with multiple agents of distinct ¹⁹F frequencies, the silica NPs became precious "multicolour" ¹⁹F MRI agents for simultaneously monitoring multiple targets with ¹⁹F MRI. In 2018, Kikuchi et al. encapsulated PFCE, PFTB₃dendron 10, and TFTBA in silica NPs (about 140 nm), which have quite different ¹⁹F frequencies and thus generated "3colour" ¹⁹F MRI through ¹⁹F frequency selective excitation (Fig. 13a).¹¹¹ After further functionalization of the surface with PEGs, carboxylic acid and hydroxyl group, respectively, a comparative study on hepatic uptake of the 3 types of silica NPs in mice was monitored with quantitative 3-color ¹⁹F MRI, which showed the lowest uptake of PEGylated PFCE silica NPs in the liver (Fig. 13b). (2) For ultra-small silica NPs, the surface can be modified with PFTB-groups for ¹⁹F MRI. Zhou et al. recently

Fig. 13 Multicolor ¹⁹F MRI phantom images of silica NPs encapsulated with PFTB₃-dendron **10** (left column), **PFTBA** (middle column), and **PFCE** (right column, a), multicolor ¹⁹F MRI monitoring of hepatic uptake of silica NPs with different surface modification (b).¹¹¹ Reproduced from ref. 111 with permission of Wiley 2018.

developed water-soluble and biocompatible PFTB-silica NPs with PFTB-groups directly attached on the surface.¹¹² Due to the small size of about 5.37 nm, the high mobility of ¹⁹F was retained for high ¹⁹F signal intensity while the quantum effects of small NPs facilitated label-free blue FL. Further surface modification with the c(RGDyC) peptide enabled ¹⁹F MRI/FL dual imaging detection of A549 cells *in vitro* and in xenograft tumor mice.

4.5.4. PFTB-gold-based hard NPs. Surface modification with fluorinated agents is a convenient way to develop gold nanoparticles (GNPs) with ¹⁹F MRI, optical and photothermal capabilities. However, the particle size, length of the linker, and compactness of ¹⁹F-groups have significant impact on the ¹⁹F MRI capability, *i.e.*, larger particle size, shorter linker, and compact ¹⁹F weaken or even quench the ¹⁹F signal. PFTB-thiols 79-82 with flexible and hydrophilic linkers are favourable agents for developing PFTB-GNP ¹⁹F MRI agents (Fig. 14a). (1) PFTB₃-dendron 79 was used to modify ultra-small GNPs (d = 1.1 nm) by Metrangolo *et al.*, which provided PFTB₃-GNP with a major ¹⁹F NMR peak and NIR luminescence at 1050 nm.¹¹³ In this case, the ultra-small GNP facilitated the mobility of ¹⁹F (T_1 760 ms; T_2 95 ms) even though a short linker was used. However, the PFTB₃-GNP was not water-soluble. (2) To prepare water-soluble PFTB-GNPs, PFTB-thiols 80-82 with hydrophilic linkers were employed to modify small GNPs (d = 2-4 nm) by Carril *et al.* (Fig. 14a).¹¹⁴ It was found that the long and flexible PEG linker (3000 Da) in the thiol 82modified GNP (PFTB_{ether}-GNP) facilitated high water-solubility, stability, and ¹⁹F MRI sensitivity, while the short linker (176 Da) in the agent 81-modified GNP led to low stability and a 60% loss of the ¹⁹F signal. Recently, Carril et al. prepared water-soluble and stable ultra-small PFTB_{amide}-GNP ($r_c = 1.54 \pm 0.54 \text{ nm}$) by first modifying the GNP with a thiol and carboxyl ending PEG ligand

Fig. 14 Structures of PFTB-thiols **79–82** (a) and PFTB-GNP (b), ¹⁹F MRI phantom images of PFTB_{ether}-GNP (c, ¹⁹F concentration for 1–3: 21 mM, 15 mM, 1.5 mM) and images of mouse's belly after i.v. injection of PFTB_{ether}-GNP (d).¹¹⁵ Reproduced from ref. 115 with permission of American Chemical Society 2020.

and then conjugating part of the carboxyl groups with PFTB-amines (Fig. 14b).¹¹⁵ Compared to PFTB_{amide}-GNP, the long and flexible PEG linker (3000 Da) and the small gold core ($r_c = 1.47 \pm 0.43$ nm) of PFTB_{ether}-GNP facilitated high ¹⁹F loading (840 ¹⁹F per GNP) and high mobility of ¹⁹F (T_1 1161 ms, T_2 1030 ms) for sensitive ¹⁹F MRI in mice (Fig. 14c and d). Notably, a recent study by Carrillo-Carrión *et al.* showed that modifying the quantum dot surface with PFTB-agents promoted the nanoparticle–cell membrane interactions and cellular uptake.¹¹⁶ Therefore, PFTB–GNP may find application in cell tracking with ¹⁹F MRI/FL dual imaging.

4.6. PFTB-containing chelates

After conjugation of the PFTB-group and the paramagnetic ion chelate through a linker, the paramagnetic ion would significantly affect the chemical shift and relaxation times of ¹⁹F through the paramagnetic relaxation enhancement (PRE) effect and pseudo contact shift (PCS) effect. As the distance between the PFTB-group and the paramagnetic ion chelate plays a crucial role in the PER- and PCS-effect, tuning the length, degradability, geometry of the linker, and the redox state of the ion have delivered many valuable ¹⁹F MRI agents,¹¹⁷ which are summarized in the following categories.

4.6.1. PFTB-chelates with fixed linkers. As the macrocyclic chelator DOTA is widely used in ¹H MRI, the conjugation of DOTA and PFTB may deliver ¹⁹F-¹H dual MRI agents, multicolor ¹⁹F MRI agents, and activatable ¹⁹F MRI probes. Yu and Jiang first integrated DOTA and PFTB₃-dendron into PFTB₃-DOTA 83 and 84 as potential ¹⁹F-¹H dual MRI agents (Fig. 15a).¹¹⁸ However their high ¹⁹F% (46% and 40%) severely limited the water solubility and hampered further application. After reducing the ¹⁹F% to 21%, a water-soluble PFTB–DOTA **85** was developed by Yu and Jiang (Fig. 15a).¹¹⁹ Upon chelating paramagnetic ions, chelates 85 showed significantly shifted ¹⁹F signal frequencies (up to 8 ppm) and environmentinsensitive relaxation rates, which may facilitate accurate quantification and simultaneous tracking of multiple targets with "multicolour" ¹⁹F MRI (Fig. 15b). Compared to previous "one compound, one colour"-based 3-colour ¹⁹F MRI,¹¹¹ this "one chelator, multiple colours" strategy is more convenient,

Fig. 15 Structures of PFTB–DOTA **83–87** (a), ¹⁹F NMR and relaxation times (in ms) of **85** (b) and **86** (c) chelates.^{119,120} Reproduced from ref. 119 with permission of Royal Society of Chemistry 2011 and ref. 120 licensed by CC-BY.

flexible, and reliable, which would be highly valuable for in vivo studies due to identical physicochemical and biological properties of the PFTB-DOTA-chelates. In 2020, a similar PFTB-DOTA 86 was developed by Laurent et al. as ¹⁹F-¹H dual MRI agents (Fig. 15a).¹²⁰ Compared to chelator 85 containing a tetraethylene glycol linker, chelator 86 with a longer linker had much less changes in the chemical shift and relaxation times, which clearly showed the impact of the linker on the magnetic resonance properties of chelators (Fig. 15c). Molecular dynamic simulations indicated a distance of 4.5 to 10 Å between the ¹⁹F and the chelated Gd3+. Recently, Que et al. developed watersoluble PFTB₂-DOTA 87 as a ¹⁹F/¹H PARACEST MRI agent, in which a glucose moiety considerably improved the solubility and reduced the ¹⁹F% to 29% (Fig. 15).¹²¹ After chelating Fe²⁺, Co²⁺ and Ni²⁺ with chelator 87, the PRE-effect significantly reduced the relaxation times, which facilitated highly sensitive ¹⁹F MRI detection in the 40-60 µM range as well as ¹H PARACEST MRI from the exchangeable amide protons.

4.6.2. PFTB-chelates with variable linkers. Manipulating the distance between the ¹⁹F and the paramagnetic ions would considerably attenuate the ¹⁹F chemical shift and relaxation times, and this has led to many stimuli-responsive PFTB–DOTA ¹⁹F MRI probes. The distance can be manipulated by either enzymatic cleavage of the linker or ion chelating-induced linker conformation changes. (1) Chen *et al.* prepared matrix metalloprotease-2 (MMP-2) activatable ¹⁹F MRI probe **88** by conjugating the PFTB-group and Gd³⁺–DOTA through an MMP-2 cleavable peptide for real-time monitoring of MMP-2 activity (Fig. 16a).¹²² The ¹⁹F signal of probe **88** was partially turned "off" by the PRE-effect of Gd³⁺, while it was turned "on" upon MMP-2 cleavage of the linker. While the already pretty long peptidic linker between the ¹⁹F and the Gd³⁺ in probe **88** considerably weakened the PRE-effect, a low ¹⁹F signal

enhancement of 4.8 fold in SCC7 cells was obtained. (2) Recently, Que et al. developed PFTB-Tm³⁺-DO3A 89 as a novel "off to on" ¹⁹F MRI probe for Zn²⁺ sensing (Fig. 16a).¹²³ In this case, the PRE- and PCS-effects of Tm³⁺ turned "off" the ¹⁹F signal of probe **89**, while Zn²⁺ chelation increased structural rigidity and reduced the chemical exchange rate, and thus turned "on" the ¹⁹F signal (Fig. 16b). (3) Angelovski et al. conjugated macrocyclic chelator AAZTA and PFTB-group through a Ca²⁺ chelator EGTA to give a ratiometric ¹⁹F MRI probe 90 for Ca²⁺ sensing (Fig. 16c and d).¹²⁴ Upon Ca²⁺ chelating, the distance between the ¹⁹F and the Dy³⁺ in probe 90 considerably reduced and the ¹⁹F signal was reduced accordingly, while diamagnetic Y^{3+} chelated **90** served as a perfect reference. Notably, these stimuli-responsive ¹⁹F MRI probes usually suffer from low ¹⁹F sensitivity due to low ¹⁹F_{eff} and solubility. Thus, novel strategies for improving ¹⁹F sensitivity, solubility and stimuli-response are of great importance.

4.6.3. PFTB-chelates with variable ion redox states. Besides manipulating the linkers, tuning the redox states of paramagnetic ions in PFTB-chelates is another convenient strategy for stimuli-responsive ¹⁹F MRI agents. Following redox state changes, the PRE-effect of paramagnetic ions may be either reduced to turn "on" the ¹⁹F signal or enhanced to turn "off" the ¹⁹F signal. (1) The redox transition of Co²⁺ to Co³⁺ in PFTB-Co²⁺-TACN **91** and **92** was accompanied by a significant chemical shift change ($\Delta \delta \approx 10$ ppm) and prolonged T_1 , which

Fig. 16 Structures of PFTB–DOTA **88–90** (a), ¹⁹F MRI phantom images of **89** in the presence of Zn²⁺ (b) and **90** chelated with Dy³⁺ and Y³⁺ in the presence of Ca²⁺ (c, normalized Dy³⁺/Y³⁺ images; d, quantitative Ca²⁺ map).^{123,124} Reproduced from ref. 123 with permission of Royal Society of Chemistry 2020 and ref. 124 licensed by CC-BY.

Fig. 17 Structures of PFTB-chelates **91–99** (a), chemical shift selective ¹⁹F MRI phantom images of **92** in the presence of H_2O_2 (b).¹²⁵ Reproduced from ref. 125 with permission of American Chemical Society 2018.

was employed by Que et al. to monitor H₂O₂ production and peroxidase activity with ¹⁹F MRI (Fig. 17a and b).¹²⁵ The large chemical shift difference facilitated ¹⁹F MRI detection of both species through chemical shift selective pulse sequences. (2) The redox transition of paramagnetic Cu²⁺ to diamagnetic Cu⁺ was also employed by Que et al. in the development of PFTB-Cu²⁺-ATSM 93-96 as a reduction agent-responsive ¹⁹F MRI/ NMR probe (Fig. 17a).¹²⁶ Notably, the PEG linker in probes 93-96 played multiple roles and the tetraethylene glycol linker showed better reduction potential, relaxation properties and hydrophilicity. However, probe 96 suffered from low water solubility and ¹⁹F sensitivity during an *in vivo* study. Then, probe 97 with 2 PFTB-groups for higher ¹⁹F signal intensity and a glucose moiety for better solubility was developed, which was further formulated into nanoemulsion (d = 100 nm) for *in vivo* application (Fig. 17a).¹²⁷ (3) The pH-sensitive Ni²⁺ coordination states of diamagnetic chelate 98 and paramagnetic chelate 99 were employed by Que et al. to sense pH with chemical shift selective ¹⁹F MRI (Fig. 17a).¹²⁸

5. Current status of ¹⁹F MRI agents

Compared to ¹H MRI agents with extensive clinical application, ¹⁹F MRI agents have not gained clinical application even after nearly 50 years' research and development. Up to June 2021, there are only 6 ¹⁹F MRI agents in clinical trials, according to the database of www.clinicaltrials.gov (Table 1). **PFP** gas, the most promising ¹⁹F MRI agent for clinical application, has passed many phase I clinical trials for ¹⁹F MRI diagnosis of various lung diseases and entered the phase II clinical trial for chronic obstructive pulmonary disorder (COPD). **PFPE** and **PFCE**-based emulsions are currently in either preclinical trials or phase I clinical trials for ¹⁹F MRI cell tracking-assisted

Table 1 ¹⁹F MRI agents in clinical trial

Entry	¹⁹ F MRI agents	Indications	Phase
1	PFP gas	Small airways disease Asthma, post lung transplant Lung cancer, cystic fibrosis Constrictive bronchiolitis War lung injury syndrome Emphysema	Phase 1
		COPD	Phase 2
2	CS-1000 (PFPE)	SVF cell tracking PBMC tracking	Phase 1
3	VS-1000 (PFPE)	Cell tracking	Preclinical
4	CS-580 (PFCE)	Cell tracking	Preclinical
5	VS-580 (PFCE)	Cell tracking	Preclinical
6	HFB, PFCE	Irritable bowel syndrome	Suspended

diagnosis and therapy. On the other hand, **HFB** and **PFCE**filled capsules have been suspended from clinical trials for irritable bowel syndrome due to technical problems.

The considerable gap between the booming ¹⁹F MRI research and its poor clinical application indicates many advantages and disadvantages of ¹⁹F MRI agents. On the one hand, compared to the commercially available Gd³⁺ and other metal-based ¹H MRI agents, ¹⁹F MRI agents have many peculiar advantages, including "hot spot" images without background, high specificity, quantitative images, stimuli and environmental sensitivity, relatively high biocompatibility, etc., which would lead to even more application in biomedical research. On the other hand, in contrast to ¹H MRI using ubiquitous and abundant water in biological systems as a signal source, ¹⁹F MRI employs biologically orthogonal and absent fluorinated agents as signal sources. So, ¹⁹F MRI agents suffer from the disadvantages of low sensitivity, high dosage, and safety concerns. The low sensitivity of MRI usually requires lower millimolar local ¹⁹Feff concentration to generate clear ¹⁹F MR images within reasonable data collection time. The high local ¹⁹F_{eff} concentration may be achievable in many in vitro studies but very challenging during in vivo studies. The in vivo dilution by body fluid and the off-target issue would hamper the ¹⁹F MRI detection and require a high dose of the ¹⁹F MRI agent, which usually leads to toxicity, severe organ retention, and safety concerns, which may be the main reason why many ¹⁹F MRI agents in biomedical research can hardly be translated into clinical application. Although most PFCs have relatively high biocompatibility, the long organ resident time has raised considerable safety concerns. For example, due to the long resident time in humans and the environment, perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) have been banned from use by the United Nations (UN).

Recently, many strategies have been developed to address the high dose issue and safety concerns of ¹⁹F MRI agents. (1) Many synthetic ¹⁹F MRI agents, *e.g.*, PFTB-dendrimer **63**, with high biocompatibility and short organ resident time facilitated the high dose and safe *in vivo* ¹⁹F MRI. (2) Many sensitivity enhancing ways, such as unifying the ¹⁹F signal, shortening the relaxation times, and assembly or encapsulation of many ¹⁹F_{eff}, considerably reduced the *in vivo* dose of ¹⁹F MRI agents. (3) Many *in vivo* enrichment methods, such as nanotechnology,

ChemComm

targeted delivery, and stimuli-responsive techniques, improved the specificity and further reduced the dose of ¹⁹F MRI agents. Although extensively used in biomedical research, PFC-based ¹⁹F MRI agents would eventually face safety issues. Synthetic ¹⁹F MRI agents, *e.g.*, PFTB-agents, have shown obvious advantages over PFC-based ones, such as high sensitivity, and good physicochemical and biological properties. But the case-by-case synthesis and high cost of these synthetic ¹⁹F MRI agents are still hampering their clinical application.

6. Conclusion and prospects

In this feature article, we have summarized the prominent roles of PFTB in the development and application of various highperformance ¹⁹F MRI agents from the angles of chemistry, magnetic resonance, and biomedicine. In the last 15 years, PFTB-19F MRI agents have gained rapid development and significantly promoted ¹⁹F MRI in biomedicine. Compared to the PFCs, PFTB has shown its bright side of an intense ¹⁹F signal from all equivalent ¹⁹F and its versatile side of fitting into various needs with an easily modifiable hydroxyl handle, which provides many synthetic means to achieve high sensitivity, solubility, biocompatibility, and multifunctionality. In contrast, modification of PFCs is challenging due to the lack of a modifiable group and the high fluorine content-induced abnormal chemical reactivity (fluorous effect). Thus, PFCs are more fit for developing NP-based ¹⁹F MRI agents, while PFTB is fit for developing both NP-based and single molecule-based ¹⁹F MRI agents. Furthermore, PFTB-19F MRI agents have contributed to solving the critical issues of sensitivity, organ retention, and specificity in PFC-based ¹⁹F MRI agents. However, PFTB also has its weak side in ¹⁹F MRI agent development, such as relying on chemical synthesis, inducing low solubility and aggregation tendency, limited ¹⁹F signal response ($\Delta \delta < 1$ ppm) to molecular geometry, microenvironment, and target interactions, etc.

The future development, especially potential clinical application, of PFTB-19F MRI agents relies on the multidisciplinary collaboration of chemistry, nanotechnology, biomedicine, and magnetic resonance communities. First, the case-by-case synthesis of PFTB-19F MRI agents is always challenging, timeconsuming, and expensive, which severely limits their biomedical application. Thus, it would be beneficial to develop and commercialize some general PFTB-building blocks and multifunctional PFTB-modules, which may significantly relieve the synthetic burden of PFTB-¹⁹F MRI agents. Besides the PFTB₃dendron 10 and the "add-on" modules 75-78, more PFTBmodules with easy conjugation and multifunction are preferred, such as "clickable", multimodal imaging, and stimuliresponsive modules. Second, incorporating readily available PFTB-modules into NPs and modulating the relaxation times with the EPR effect may efficiently address the sensitivity issue of ¹⁹F MRI agents. Encapsulating PFTB-modules, e.g., PFTB₃dendron 10 prepared in 1 step on 30 g scales, into NPs can easily include millions of ¹⁹Feff in a single NP. However synthetic 19 F MRI agents are inferior because the more the 19 F_{eff} in a molecule the more the synthetic steps required, which significantly increases the cost and limits the availability. For example, PFTB₂₇-dendron **60** with 243 ¹⁹F_{eff} was synthesized in 12 steps with a 9% yield, which can hardly scale up for ¹⁹F MRI application. Finally, the development of magnetic resonance hardware, hyperpolarize strategy, and pulse sequence would significantly improve ¹⁹F MRI agents' sensitivity and promote their clinical translation. For example, strategies to hyperpolarize ¹⁹F would revolutionize the current way of using ¹⁹F MRI agents by dramatically reducing their dose and imaging targets at micromolar even nanomolar concentrations. With the development of PFTB-¹⁹F MRI agents, ¹⁹F MRI will continually be an extremely promising quantification and tracking technology to address critical biomedical issues and beyond.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors thank the National Natural Science Foundation of China (22077098 and 91859206) and the National Key R&D Program of China (2018YFA0704000).

Notes and references

- 1 M. T. Vlaardingerbroek and J. A. Boer, *Magnetic resonance imaging*, Springer Science & Business Media, Springer-Verlag Berlin Heidelberg, 2013, vol. 2.
- 2 R. Weissleder and M. J. Pittet, Nature, 2008, 452, 580-589.
- 3 P. Caravan, J. J. Ellison, T. J. McMurry and R. B. Lauffer, *Chem. Rev.*, 1999, **99**, 2293–2353.
- 4 H. Li and T. J. Meade, J. Am. Chem. Soc., 2019, 141, 17025-17041.
- 5 Y. B. Yu, Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 2013, 5, 646–661.
- 6 R.-C. Jesús, P. B. Brad, P. A. Bottomley and J. W. M. Bulte, NMR Biomed., 2011, 24, 114-129.
- 7 I. Tirotta, V. Dichiarante, C. Pigliacelli, G. Cavallo, G. Terraneo, F. B. Bombelli, P. Metrangolo and G. Resnati, *Chem. Rev.*, 2015, 115, 1106–1129.
- 8 W. Wolf, C. A. Presant and V. Waluch, *Drug Delivery Rev.*, 2000, **41**, 55–74.
- 9 C. Han, S. Viel, F. Ziarelli and L. Peng, Chem. Soc. Rev., 2013, 42, 7971-7982.
- 10 J. Wang, M. Sánchez-Roselló, J. L. Aceña, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok and H. Liu, *Chem. Rev.*, 2014, **114**, 2432–2506.
- 11 Y. Ogawa, E. Tokunaga, O. Kobayashi, K. Hirai and N. Shibata, *iScience*, 2020, 23, 101467.
- 12 R. Berger, G. Resnati, P. Metrangolo, E. Weber and J. Hulliger, *Chem. Soc. Rev.*, 2011, **40**, 3496–3508.
- 13 G. N. Holland, P. A. Bottomley and W. S. Hinshaw, J. Magn. Reson., 1977, 28, 133–136.
- 14 L. S. Li, Y. Li, Y. J. Lan and J. H. Zhang, Chin. J. Magn. Reson., 2007, 24, 353–364.
- 15 E. T. Ahrens, R. Flores, H. Xu and P. A. Morel, *Nat. Biotechnol.*, 2005, 23, 983–987.
- 16 H. Zhang, S. Chen, Y. Yuan, Y. Li, Z.-X. Jiang and X. Zhou, ACS Appl. Bio Mater., 2019, 2, 27–32.
- 17 R. P. Mason, P. P. Antich, E. E. Babcock, J. L. Gerberich and R. L. Nunnally, *Magn. Reson. Imaging*, 1989, 7, 475–485.
- U. Flögel, Z. Ding, H. Hardung, S. Jander, G. Reichmann, C. Jacoby, R. Schubert and J. Schrader, *Circulation*, 2008, 118, 140–148.

- 19 U. Gross, S. Rudiger and H. Reichelt, J. Fluorine Chem., 1991, 53, 155–161.
- 20 Y. Nosé, Artif. Organs, 2004, 28, 807-812.
- 21 Z.-X. Jiang and Y. B. Yu, Tetrahedron, 2007, 63, 3982-3988.
- 22 E. Parman, L. Toom, S. Selberg and I. Leito, J. Phys. Org. Chem., 2019, 32, e3940.
- 23 Y. Li, B. Thapa, H. Zhang, X. Li, F. Yu, E.-K. Jeong, Z. Yang and Z.-X. Jiang, *Tetrahedron*, 2013, **69**, 9586–9590.
- 24 J. Zhu, Y. Xiao, H. Zhang, Y. Li, Y. Yuan, Z. Yang, S. Chen, X. Zheng, X. Zhou and Z.-X. Jiang, *Biomacromolecules*, 2019, **20**, 1281–1287.
- 25 X. Wang, Y. Li, T. Wu, Z. Yang, X. Zheng, S. Chen, X. Zhou and Z.-X. Jiang, *Biomacromolecules*, 2020, **21**, 725–731.
- 26 W. Yu, Y. Yang, S. Bo, Y. Li, S. Chen, Z. Yang, X. Zheng, Z.-X. Jiang and X. Zhou, J. Org. Chem., 2015, 80, 4443–4449.
- 27 S. Bo, C. Song, Y. Li, W. Yu, S. Chen, X. Zhou, Z. Yang, X. Zheng and Z.-X. Jiang, *J. Org. Chem.*, 2015, **80**, 6360–6366.
- 28 X. Liu, Y. Yuan, S. Bo, Y. Li, Z. Yang, X. Zhou, S. Chen and Z.-X. Jiang, *Eur. J. Org. Chem.*, 2017, 4461–4468.
- 29 B. L. Dyatkin, E. P. Mochalina and I. L. Knunyants, *Tetrahedron*, 1965, **21**, 2991–2995.
- 30 R. Filler and R. M. Schure, J. Org. Chem., 1967, 32, 1217-1219.
- 31 F. J. Pavlik and P. E. Toren, J. Org. Chem., 1970, 35, 2054-2056.
- 32 S. P. Kotun, J. D. O. Anderson and D. D. DesMarteau, *J. Org. Chem.*, 1992, 57, 1124–1131.
- 33 D. Szabó, J. Mohl, A.-M. Bálint, A. Bodor and J. Rábai, J. Fluorine Chem., 2006, 127, 1496–1504.
- 34 Q. Chu, C. Henry and D. P. Curran, Org. Lett., 2008, 10, 2453-2456.
- 35 Z.-X. Jiang, Y. Feng and Y. B. Yu, Chem. Commun., 2011, 47, 7233-7235.
- 36 X. Zhao, W. Y. Ng, K.-C. Lau, A. E. C. Collis and I. T. Horváth, Phys. Chem. Chem. Phys., 2012, 14, 3909–3914.
- 37 S. Decato, T. Bemis, E. Madsen and S. Mecozzi, *Polym. Chem.*, 2014, 5, 6461–6471.
- 38 H. Zhang, X. Li, Q. Shi, Y. Li, G. Xia, L. Chen, Z. Yang and Z.-X. Jiang, Angew. Chem., Int. Ed., 2015, 54, 3763–3767.
- 39 J. J. Kasper, J. E. Hitro, S. R. Fitzgerald, J. M. Schnitter, J. J. Rutowski, J. A. Heck and J. L. Steinbacher, *J. Org. Chem.*, 2016, 81, 8095–8103.
- 40 I. Tirotta, A. Mastropietro, C. Cordiglieri, L. Gazzera, F. Baggi, G. Baselli, M. G. Bruzzone, I. Zucca, G. Cavallo, G. Terraneo, F. B. Bombelli, P. Metrangolo and G. A. Resnati, *J. Am. Chem. Soc.*, 2014, **136**, 8524–8527.
- 41 R. J. A. Nabuurs, V. V. Kapoerchan, A. Metaxas, S. de Jongh, M. de Backer, M. M. Welling, W. Jiskoot, A. D. Windhorst, H. S. Overkleeft, M. A. van Buchem, M. Overhand and L. van der Weerd, *Bioorg. Med. Chem.*, 2014, 22, 2469–2481.
- 42 C. M. Tressler and N. J. Zondlo, Org. Lett., 2016, 18, 6240-6243.
- 43 H. Meng, L. Wen, Z. Xu, Y. Li, J. Hao and Y. Zhao, *Org. Lett.*, 2019, 21, 5206–5210.
- 44 Z.-X. Jiang, X. Liu, E.-K. Jeong and Y. B. Yu, *Angew. Chem., Int. Ed.*, 2009, **48**, 4755–4758.
- 45 W. K. Hagmann, J. Med. Chem., 2008, 51, 4359-4369.
- 46 K. Müller, C. Faeh and F. Diederich, *Science*, 2007, **317**, 1881–1886.
- 47 G. Schitter, A. J. Steiner, G. Pototschnig, E. Scheucher, M. Thonhofer, C. A. Tarling, S. G. Withers, K. Fantur, E. Paschke, D. J. Mahuran, B. A. Rigat, M. B. Tropak, C. Illaszewicz, R. Saf, A. E. Stütz and T. M. Wrodnigg, *ChemBioChem*, 2010, 11, 2026–2033.
- 48 T. Snyder-Leiby, S. Dingman, R. Thomas and C. Guo, Appl. Microbiol. Biotechnol., 2004, 64, 223–227.
- 49 S. Dingman, T. Snyder-Leiby, D. J. Mack, R. Thomas and C. Guo, Appl. Microbiol. Biotechnol., 2004, 64, 556–559.
- 50 S. Orlandi, M. Cavazzini, S. Capuani, A. Ciardello and G. Pozzi, *J. Fluorine Chem.*, 2020, 237, 109596.
- 51 K. Tanabe, H. Harada, M. Narazaki, K. Tanaka, K. Inafuku, H. Komatsu, T. Ito, H. Yamada, Y. Chujo, T. Matsuda, M. Hiraoka and S.-i. Nishimoto, J. Am. Chem. Soc., 2009, 131, 15982–15983.
- 52 Q. Shi, Y. Li, S. Bo, X. Li, P. Zhao, Q. Liu, Z. Yang, H. Cong, H. Deng, M. Chen, S. Chen, X. Zhou, H. Ding and Z.-X. Jiang, *Chem. Commun.*, 2016, **52**, 5136–5139.
- 53 Y. Li, Q. Shi, J. Shao, Y. Yuan, Z. Yang, S. Chen, X. Zhou, S. Wen and Z.-X. Jiang, *Eur. J. Med. Chem.*, 2018, **148**, 279–290.

- 54 H. Shi, B. Lai, S. Chen, X. Zhou, J. Nie and J.-A. Ma, *Chin. J. Chem.*, 2017, **35**, 1693–1700.
- 55 K. Tanabe, Z. Zhang, T. Ito, H. Hatta and S. Nishimoto, *Org. Biomol. Chem.*, 2007, **5**, 3745–3757.
- 56 P. B. Gupta, T. T. Onder, G. Jiang, K. Tao, C. Kuperwasser, R. A. Weinberg and E. S. Lander, *Cell*, 2009, **138**, 645–659.
- 57 E. N. G. Marsh and Y. Suzuki, ACS Chem. Biol., 2014, 9, 1242–1250. 58 K. E. Arntson and W. C. K. Pomerantz, J. Med. Chem., 2016, 59,
- 5158–5171. 59 C. D. Pietrantonio, A. Pandey, J. Gould, A. Hasabnis and
- R. S. Prosser, *Methods Enzymol.*, 2019, **615**, 103–130.
- 60 E. N. G. Marsh, Acc. Chem. Res., 2014, 47, 2878-2886.
- 61 A. B. Allison, V. Jan-Stefan, B. Nediljko and K. Beate, *Acc. Chem. Res.*, 2017, **50**, 2093–2103.
- 62 S. Huhmann and B. Koksch, Eur. J. Org. Chem., 2018, 3667–3679.
- 63 Z.-X. Jiang and Y. B. Yu, J. Org. Chem., 2007, 72, 1464–1467.
- 64 B. C. Buer, B. J. Levin and E. N. G. Marsh, *J. Pept. Sci.*, 2013, **19**, 308-314.
- 65 C. M. Tressler and N. J. Zondlo, *Biochemistry*, 2017, 56, 1062–1074.
- 66 A. K. Pandey, D. Naduthambi, K. M. Thomas and N. J. Zondlo, J. Am. Chem. Soc., 2013, 135, 4333–4363.
- 67 C. M. Tressler and N. J. Zondlo, J. Org. Chem., 2014, 79, 5880–5886.
- 68 C. M. Tressler and N. J. Zondlo, ACS Chem. Biol., 2020, 15, 1096–1103.
- 69 C. M. Tressler and N. J. Zondlo, Org. Lett., 2016, 18, 6240-6243.
- 70 J. Zhu, H. Zhang, K. Chen, Y. Li, Z. Yang, S. Chen, X. Zheng, X. Zhou and Z.-X. Jiang, *Adv. Healthcare Mater.*, 2020, 9, 1901331.
 71 X. Yue, Y. Farana, M. F. Shang, and J. Shang, *Adv. Healthcare Mater.*, 2020, 9, 1901331.
- 72 E. Gianolio, R. Napolitano, F. Fedeli, F. Arena and S. Aime, *Chem. Commun.*, 2009, 6044–6046.
- 73 L. Nurmi, H. Peng, J. Seppälä, D. M. Haddleton, I. Blakey and A. K. Whittaker, *Polym. Chem.*, 2010, 1, 1039–1047.
- 74 K. J. Thurecht, I. Blakey, H. Peng, O. Squires, S. Hsu, C. Alexander and A. K. Whittaker, J. Am. Chem. Soc., 2010, 132, 5336–5337.
- 75 C. Zhang, D. S. Kim, J. Lawrence, C. J. Hawker and A. K. Whittaker, ACS Macro Lett., 2018, 7, 921–926.
- 76 J. N. Roitman and A. G. Pittman, J. Polym. Sci., Part B: Polym. Lett., 1972, 10, 499–503.
- 77 K. Knop, R. Hoogenboom, D. Fischer and U. S. Schubert, Angew. Chem., Int. Ed., 2010, 49, 6288–6308.
- 78 T. Wu, K. Chen, S. He, X. Liu, X. Zheng and Z.-X. Jiang, *Org. Process Res. Dev.*, 2020, **24**, 1364–1372.
- 79 C. Biaggi, M. Benaglia, M. Ortenzi, E. Micotti, C. Perego and M. G. D. Simoni, J. Fluorine Chem., 2013, 153, 172–177.
- 80 S. Rossi, M. Benaglia, M. Ortenzi, E. Micotti, C. Perego and M. G. D. Simoni, *Tetrahedron Lett.*, 2011, 52, 6581–6583.
- 81 W. B. Tucker, A. M. McCoy, S. M. Fix, M. F. Stagg, M. M. Murphy and S. Mecozzi, *J. Polym. Sci., Part A: Polym. Chem.*, 2014, 52, 3324–3336.
- 82 D. W. De Kort, J. P. M. van Duynhoven, F. J. M. Hoeben, H. M. Janssen and H. Van As, *Anal. Chem.*, 2014, **86**, 9229–9235.
- 83 D. W. De Kort, W. H. Rombouts, F. J. M. Hoeben, H. M. Janssen, H. Van As and J. P. M. van Duynhoven, *Macromolecules*, 2015, 48, 7585–7591.
- 84 N. Bourouina, D. W. de Kort, F. J. M. Hoeben, H. M. Janssen, H. Van As, J. Hohlbein, J. P. M. van Duynhoven and J. M. Kleijn, *Langmuir*, 2015, **31**, 12635–12643.
- 85 E. Kovacs, J. Deme, G. Turczel, T. Nagy, V. Farkas, L. Trif, S. Keki, P. Huszthy and R. Tuba, *Polym. Chem.*, 2019, **10**, 5626–5634.
- 86 V. Farkas, G. Turczel, J. Deme, A. Domján, L. Trif, A. Mirzaei, D. Vu Hai, M. Nagyházi, S. Kéki, P. Huszthy and R. Tuba, *Polym. Chem.*, 2021, 12, 2175–2180.
- 87 I. K. Tennie and A. F. M. Kilbinger, *Macromolecules*, 2020, 53, 10386-10396.
- 88 P. Parhami and B. M. Fung, J. Phys. Chem., 1983, 87, 1928-1931.
- 89 N. G. Taylor, S. H. Chung, A. L. Kwansa, R. R. Johnson, A. J. Teator, N. J. B. Milliken, K. M. Koshlap, Y. G. Yingling, Y. Z. Lee and F. Leibfarth, *Chem. – Eur. J.*, 2020, 26, 9982–9990.
- 90 X. Yue, M. Taraban, L. L. Hyland and Y. B. Yu, *J. Org. Chem.*, 2012, 77, 8879–8887.
- 91 Z.-X. Jiang and Y. B. Yu, J. Org. Chem., 2010, 75, 2044-2049.
- 92 X. Liu, Z.-X. Jiang, B. Y. Yu and E.-K. Jeong, Magn. Reson. Mater. Phys., Biol. Med., 2019, 32, 97–103.

Published on 24 June 2021. Downloaded by Huazhong University of Science & Technology on 8/6/2021 3:27:41 AM

- 93 M. B. Taraban, Y. Li, F. Yue, E. V. Jouravleva, M. A. Anisimov, Z.-X. Jiang and Y. B. Yu, RSC Adv., 2014, 4, 54565-54575.
- 94 M. B. Taraban, D. J. Deredge, M. E. Smith, K. T. Briggs, Y. Li, Z.-X. Jiang, P. L. Wintrode and Y. B. Yu, *Magn. Reson. Chem.*, 2019, 57, 861–872.
- 95 M. B. Taraban, D. J. Deredge, M. E. Smith, K. T. Briggs, Y. Feng, Y. Li, Z.-X. Jiang, P. L. Wintrode and Y. B. Yu, *RSC Adv.*, 2019, 9, 1956–1966.
- 96 I. Pecnikaj, D. Minudri, L. Otero, F. Fungo, M. Cavazzini, S. Orlandi and G. Pozzi, *New J. Chem.*, 2017, **41**, 7729–7738.
- 97 G. Pozzi, S. Quici, M. C. Raffo, C. A. Bignozzi, S. Caramori and M. J. Orlandi, *J. Phys. Chem. C*, 2011, **115**, 3777–3788.
- 98 A. M. Huynh, A. Müller, S. M. Kessler, S. Henrikus, C. Hoffmann, A. K. Kiemer, A. Bücker and G. Jung, *ChemMedChem*, 2016, 11, 1568–1575.
- 99 Z. Chen, N. Ren, X. Ma, J. Nie, F.-G. Zhang and J.-A. Ma, *ACS Catal.*, 2019, **9**, 4600–4608.
- 100 M. I. Martinez Espinoza, L. Sori, A. Pizzi, G. Terraneo, I. Moggio, E. Arias, G. Pozzi, S. Orlandi, V. Dichiarante, P. Metrangolo, M. Cavazzini and F. Baldelli Bombelli, *Chem. – Eur. J.*, 2019, 25, 9078–9087.
- 101 Z. Wang, X. Yue, Y. Wang, C. Qian, P. Huang, M. Lizak, G. Niu, F. Wang, P. Rong, D. O. Kiesewetter, Y. Ma and X. Chen, *Adv. Healthcare Mater.*, 2014, 3, 1326–1333.
- 102 J. Zhang, Y. Yuan, H. Li, H. Yang, H. Zhang, S. Chen, X. Zhou, Z. Yang and Z.-X. Jiang, *J. Org. Chem.*, 2020, 85, 6778–6787.
 103 O. Munkhbat, M. Canakci, S. Zheng, W. Hu, B. Osborne,
- 103 O. Munkhbat, M. Canakci, S. Zheng, W. Hu, B. Osborne, A. A. Bogdanov and S. Thayumanavan, *Biomacromolecules*, 2019, 20, 790–800.
- 104 Q. Peng, Y. Li, S. Bo, Y. Yuan, Z. Yang, S. Chen, X. Zhou and Z.-X. Jiang, *Chem. Commun.*, 2018, 54, 6000–6003.
- 105 L. Jamgotchian, S. Vaillant, E. Selingue, A. Doerflinger, A. Belime, M. Vandamme, G. Pinna, W. L. Ling, E. Gravel, S. Meriaux and E. Doris, *Nanoscale*, 2021, 13, 2373–2377.
- 106 O. Koshkina, P. B. White, A. H. J. Staal, R. Schweins, E. Swider, I. Tirotta, P. Tinnemans, R. Fokkink, A. Veltien, N. K. van Riessen, E. R. H. van Eck, A. Heerschap, P. Metrangolo, F. Baldelli Bombelli and M. Srinivas, J. Colloid Interface Sci., 2020, 565, 278–287.
- 107 S. Bo, Y. Yuan, Y. Chen, Z. Yang, S. Chen, X. Zhou and Z.-X. Jiang, *Chem. Commun.*, 2018, 54, 3875–3878.
- 108 Y. Zhang, S. Bo, T. Feng, X. Qin, Y. Wan, S. Jiang, C. Li, J. Lin, T. Wang, X. Zhou, Z.-X. Jiang and P. Huang, *Adv. Mater.*, 2019, **31**, 1806444.
- 109 H. Zhang, Q. Yu, Y. Li, Z. Yang, X. Zhou, S. Chen and Z.-X. Jiang, *Chem. Commun.*, 2020, 56, 3617–3620.

- 110 H. Zhang, S. Bo, K. Zeng, J. Wang, Y. Li, Z. Yang, X. Zhou, S. Chen and Z.-X. Jiang, *J. Mater. Chem. B*, 2020, **8**, 4469.
- 111 K. Akazawa, F. Sugihara, T. Nakamura, H. Matsushita, H. Mukai, R. Akimoto, M. Minoshima, S. Mizukami and K. Kikuchi, *Angew. Chem., Int. Ed.*, 2018, 57, 16742–16747.
- 112 S. Li, Y. Yuan, Y. Yang, C. Li, M. T. McMahon, M. Liu, S. Chen and X. Zhou, *J. Mater. Chem. B*, 2018, **6**, 4293–4300.
- 113 V. Dichiarante, I. Tirotta, L. Catalano, G. Terraneo, G. Raffaini, M. R. Chierotti, R. Gobetto, F. Baldelli Bombelli and P. Metrangolo, *Chem. Commun.*, 2017, 53, 621–624.
- 114 O. Michelena, D. Padro, C. Carrillo-Carrión, P. del Pino, J. Blanco, B. Arnaiz, W. J. Parak and M. Carril, *Chem. Commun.*, 2017, 53, 2447-2450.
- 115 J. M. Arango, D. Padro, J. Blanco, S. Lopez-Fernandez, P. Castellnou, P. Villa-Valverde, J. Ruiz-Cabello, A. Martin and M. Carril, ACS Appl. Mater. Interfaces, 2021, 13, 12941–12949.
- 116 P. G. Argudo, M. Carril, M. T. Martín-Romero, J. J. Giner-Casares and C. Carrillo-Carrión, *Chem. – Eur. J.*, 2019, **25**, 195–199.
- 117 D. Xie, M. Yu, R. T. Kadakia and E. L. Que, Acc. Chem. Res., 2019, 53, 2–10.
- 118 Z.-X. Jiang and Y. B. Yu, Synthesis, 2008, 215-220.
- 119 Z.-X. Jiang, Y. Feng and Y. B. Yu, Chem. Commun., 2011, 47, 7233-7235.
- 120 E. Hequet, C. Henoumont, V. Djouana Kenfack, V. Lemau, R. Lazzaroni, S. Boutry, L. Vander Elst, R. N. Muller and S. Laurent, *Magnetochemistry*, 2020, 6, 8.
- 121 M. Yu, B. S. Bouley, D. Xie and E. L. Que, *Dalton Trans.*, 2019, **48**, 9337–9341.
- 122 X. Yue, Z. Wang, L. Zhu, Y. Wang, C. Qian, Y. Ma, D. O. Kiesewetter, G. Niu and X. Chen, *Mol. Pharmaceutics*, 2014, **11**, 4208–4217.
- 123 M. Yu, D. Xie, R. T. Kadakia, W. Wang and E. L. Que, Chem. Commun., 2020, 56, 6257–6260.
- 124 G. Gambino, T. Gambino, R. Pohmann and G. Angelovski, Chem. Commun., 2020, 56, 3492-3495.
- 125 M. Yu, B. S. Bouley, D. Xie, J. S. Enriquez and E. L. Que, J. Am. Chem. Soc., 2018, 140, 10546–10552.
- 126 D. Xie, S. Kim, V. Kohli, A. Banerjee, M. Yu, J. S. Enriquez, J. J. Luci and E. L. Que, *Inorg. Chem.*, 2017, **56**, 6429–6437.
- 127 R. T. Kadakia, D. Xie, H. Guo, B. Bouley, M. Yu and E. L. Que, *Dalton Trans.*, 2020, **49**, 16419–16424.
- 128 D. Xie, L. E. Ohman and E. L. Que, Magn. Reson. Mater. Phys., Biol. Med., 2019, 32, 89–96.