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Abstract
Objectives Multiple b-value gas diffusion-weighted MRI (DW-MRI) enables non-invasive and quantitative assessment of lung
morphometry, but its long acquisition time is not well-tolerated by patients. We aimed to accelerate multiple b-value gas DW-
MRI for lung morphometry using deep learning.
Methods A deep cascade of residual dense network (DC-RDN) was developed to reconstruct high-quality DW images from
highly undersampled k-space data. Hyperpolarized 129Xe lung ventilation images were acquired from 101 participants and were
retrospectively collected to generate synthetic DW-MRI data to train the DC-RDN. Afterwards, the performance of the DC-RDN
was evaluated on retrospectively and prospectively undersampled multiple b-value 129Xe MRI datasets.
Results Each slice with size of 64 × 64 × 5 could be reconstructed within 7.2 ms. For the retrospective test data, the DC-RDN showed
significant improvement on all quantitative metrics compared with the conventional reconstruction methods (p < 0.05). The apparent
diffusion coefficient (ADC) and morphometry parameters were not significantly different between the fully sampled and DC-RDN
reconstructed images (p > 0.05). For the prospectively accelerated acquisition, the required breath-holding time was reduced from 17.8
to 4.7 s with an acceleration factor of 4. Meanwhile, the prospectively reconstructed results showed good agreement with the fully
sampled images, with a mean difference of −0.72% and −0.74% regarding global mean ADC and mean linear intercept (Lm) values.
Conclusions DC-RDN is effective in accelerating multiple b-value gas DW-MRI while maintaining accurate estimation of lung
microstructural morphometry, facilitating the clinical potential of studying lung diseases with hyperpolarized DW-MRI.
Key Points
• The deep cascade of residual dense network allowed fast and high-quality reconstruction of multiple b-value gas diffusion-
weighted MRI at an acceleration factor of 4.

• The apparent diffusion coefficient and morphometry parameters were not significantly different between the fully sampled
images and the reconstructed results (p > 0.05).

• The required breath-holding time was reduced from 17.8 to 4.7 s and each slice with size of 64 × 64 × 5 could be reconstructed
within 7.2 ms.
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Abbreviations
ADC Apparent diffusion coefficient
CI Confidence interval
COPD Chronic obstructive lung disease
DC Data consistency
DC-RDN Deep cascade of residual dense network
DW-MRI Diffusion-weighted MRI
FS Fully sampled
h Alveolar sleeve depth
Lm Mean linear intercept
MAE Mean absolute error
R Acinar duct radius
r Acinar lumen radius
RDB Residual dense block
SIDER Signal decay into the reconstruction
SNR Signal-to-noise ratio
SSIM Structure similarity
SVR Surface-to-volume ratio
TV Total variation

Introduction

Hyperpolarized gas (3He or 129Xe) MRI provides a unique
strategy for high-resolution functional and structural imag-
ing of the lung [1, 2]. In particular, hyperpolarized gas
diffusion-weighted MRI (DW-MRI) has been demonstrat-
ed to be sensitive to microstructural changes associated
with some lung diseases, such as chronic obstructive lung
disease (COPD) [3–5] and idiopathic pulmonary fibrosis
[6, 7]. Furthermore, multiple b-value gas DW-MRI, to-
gether with theoretical diffusion models (e.g., cylinder
model [8, 9] or stretched exponential model [10]), enables
non-invasive and quantitative estimation of lung mor-
phometry parameters at the alveolar level [11]. However,
such technique suffers from long scan times due to multi-
ple b-value acquisitions and long diffusion gradient time
[12], which imposes great burdens on subjects, especially
for children and patients with lung diseases.

Compressed sensing MRI has been applied to accel-
erate hyperpolarized gas DW-MRI acquisition [11–16],
because it can reduce scan time by undersampling k-
space without additional hardware requirement [17–19].
However, compressed sensing MRI generally uses fixed
sparsifying transforms, which may not capture complex
image characteristics associated with biological tissues
[20, 21]. Moreover, the selection of hyper-parameters
(e.g., update rates and weighting parameters) is tedious
and non-trivial, and inappropriate hyper-parameters can
result in excessively smooth or residual artifacts in re-
constructed results [20, 22]. Therefore, effective ap-
proaches are highly desirable for accelerating multiple
b-value gas DW-MRI.

Recently, deep learning methods have been successfully
used for reconstructing undersampled MRI data [20–23],
providing superior performance in both reconstruction
qual i ty and speed . Such methods typica l ly use
convolutional neural networks to learn an end-to-end map-
ping from undersampled images or k-space data to refer-
ence images [24–26], and implicitly explore regularization
prior from training data [27]. In particular, deep learning
has also been used to fast and accurately reconstruct
hyperpolarized gas venti lat ion MRI from highly
undersampled k-space data [28]. Nevertheless, using deep
learning to accelerate multiple b-value gas DW-MRI has
not been explored so far. One reason is that large amounts
of high-quality fully sampled (FS) images are required in
most of deep learning–based reconstruction methods. As
mentioned previously, it is a difficult task for multiple b-
value gas DW-MRI. The other reason is that DW-MRI data
contain quantitative microstructural information, which
should be well-preserved during the reconstruction
process.

The purpose of this work was to develop a novel deep
learning framework for efficiently accelerating multiple b-val-
ue gas DW-MRI and evaluate its performance in terms of
reconstruction quality and the effects on morphometry mea-
surements by using both retrospectively and prospectively
undersampled multiple b-value 129Xe DW-MRI data.

Materials and methods

Network architecture

The proposed deep cascade of residual dense network (DC-
RDN) for accelerating multiple b-value gas DW-MRI is
illustrated in Fig. 1, which forms a cascading network by
using reconstruction modules interleaved with data consis-
tency (DC) layers several times [29]. We adopt residual
dense blocks (RDBs) as the reconstruction modules, be-
cause the RDB can not only reuse abundant features from
different levels but also substantially reduce the number of
parameters [30, 31]. Furthermore, the DC layer is used to
ensure the consistency between the reconstruction of each
cascade and the measured k-space data, which is important
to preserve quantitative microstructural information during
reconstruction [13]. Additionally, because DW images
have highly correlated edges and structural information
along the diffusion dimension, the undersampled DW im-
ages with different b-values are stacked as a multi-channel
input and then jointly reconstructed, which has potential to
achieve more favorable reconstruction quality [32–34].
The details of the network architecture are described in
Supplementary material.
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Training data simulation

Since it is difficult to acquire large amounts of FS DW-MRI
data, we generated synthetic multiple b-value DW-MRI data
from hyperpolarized 129Xe lung ventilation images. All MRI
experiments were performed under the approval of the local
Institutional Review Board, and written informed consents
were obtained from all study participants.

The hyperpolarized 129Xe lung ventilation images
were acquired from 101 participants (68 males and 33
females; age, 47.6 ± 17.2 years) between June 2016
and September 2019. Imaging was performed with a
1.5-T MRI scanner (Avanto; Siemens Healthineers).
The imaging parameters were as follows: matrix size =
96 × 84, number of slices = 24, repetition time/echo time
= 4.2/1.9 ms. After removing the slices with low signal-
to-noise ratio (SNR), a total of 1404 ventilation images
were obtained.

If the ventilation images are considered as the signal with-
out diffusion-sensitizing gradients, the signal of non-zero b-
value will be generated through the cylinder model with pseu-
dorandom values of acinar duct radius (R), acinar lumen radi-
us (r), and the measured b-values (see details in
Supplementary material). Examples of synthetic images are
presented in Supplementary Fig. 1. The synthetic images
served as the references in the training process. The
undersampled data were generated by retrospectively
undersampling the reference k-space data according to a
variable-density Cartesian random undersampling matrix at
an acceleration factor of 4.

Implementation and training

The DC-RDN was implemented using TensorFlow package
(version R2.0; https://tensorflow.google.org). All the training
and testing were performed on a desktop computer with an
Intel Xeon®Gold 6128 quad-core CPU, 64-GB RAM, and an
NVIDIA RTX 2080Ti GPU.

During the training process, the network weights were ini-
tialized using the He initialization [35] and optimized using
the Adam algorithm [36] with a fixed learning rate of 0.0002,
β1 = 0.9, β2 = 0.999, and batch size of 8. The mean-squared
error between the DC-RDN reconstructed results and the FS
images was chosen as the loss function. Total training time
was about 4 h for 200 epochs. Once the training process is
completed, the parameters of DC-RDN are fixed, which can
be adopted to effectively transform new undersampled DW-
MRI data to the corresponding reconstruction results directly.

Testing data

Fully sampled multiple b-value 129Xe DW-MRI datasets were
acquired from 5 healthy volunteers (age, 25.6 ± 2.9 years)
using a 2D gradient echo diffusion sequence [11]. For each
subject, 4 coronal slices were acquired with 30-mm thickness
and 6-mm gap using a gas mixture of 500 mL 129Xe and 500
mL N2. Additional imaging parameters were: 5 b-values (b =
0, 10, 20, 30, 40 s/cm2), matrix size = 64 × 64, files of view =
384 × 384 mm2, repetition time/echo time = 13.8/10.9 ms,
diffusion time = 5 ms, flip angle = 5°, scan time = 17.8 s.

Fig. 1 Illustration of the proposed DC-RDN model for reconstructing
multiple b-value gas DW-MRI from highly undersampled k-space data.
DC, data consistency; DC-RDN, deep cascade of residual dense network;
DW-MRI, diffusion-weighted MRI; IFT, inverse Fourier transform; kd,

diffusion direction; kx, frequency-encoding direction; ky, phase-encoding
direction; RDB, residual dense block; xd-1, the input of the d-th RDB; xd,r,
the reconstruction of the d-th RDB
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Because some COPD patients cannot tolerate the long
breath-holding time, two-fold undersampled multiple b-value
129Xe DW-MRI data were acquired from 5 COPD patients
(age, 57.2 ± 6.8 years) and then reconstructed using a conven-
tional compressed sensing method [11]. The reconstructed
results were also treated as “FS” images in the following eval-
uation. These FS datasets were retrospectively undersampled
to evaluate the reconstruction performance of the DC-RDN.

To demonstrate the performance of DC-RDN for in vivo
imaging, FS and four-fold undersampled data were prospec-
tively acquired from 5 healthy subjects (age, 24.8 ± 2.3 years).
For the FS acquisition, the flip angle was set to 5°, whereas a
higher flip angle of 9° was used for the undersampled acqui-
sition to preserve signal-to-noise ratio [18]. The acceleration
factor of 4 reduced the scan time from 17.8 to 4.7 s.

Evaluation

The DC-RDNwas compared with two CS-MRI methods, i.e.,
total variation (TV) and signal decay into the reconstruction
(SIDER) methods [15], and a deep learning method, i.e., U-
Net [37], on the retrospectively undersampled datasets. TV
and SIDER methods were implemented using the source
codes provided in https://github.com/HGGM-LIM/
compressed-sensing-diffusion-lung-MRI [15]. The original
U-Net architecture was modified to be applicable to the recon-
struction of multiple b-value gas DW-MRI in this study. The
U-Net took the undersampled images with different b-values
as a multi-channel input, and was operated on the TensorFlow
using the framework specifications in Hyun et al [37].

The reconstructed images were evaluated using 3 quantita-
tive metrics: mean absolute error (MAE), structure similarity
(SSIM) [38], and MAEADC [13]. The MAEADC was to evalu-
ate the MAE between the FS and reconstructed ADC maps.
ADC maps were derived from the first two b-value images (b
= 0 and 10 s/cm2) through a pixel-by-pixel mono-exponential
fitting [13]. Additionally, qualitative assessment of the image
quality was performed by two experienced readers using a 4-
point ordinal scale [20, 39] (see details in Supplementary
material).

The lung regions were manually segmented from the b = 0
image, which served as the region of interest for the calcula-
tions of MAE, SSIM, and MAEADC, as well as the lung mor-
phometry analysis. Lung morphometry maps, including R, r,
alveolar sleeve depth (h), mean linear intercept (Lm), and
surface-to-volume ratio (SVR), were derived from the multiple
b-value fit to the cylinder model [11].

Statistical analysis

Paired two-tailed Student’s t-tests were performed to compare
the quantitative results between the different reconstruction
methods. Comparisons in terms of image quality scores,

averaged over the two readers, were performed using
Wilcoxon signed-rank tests. Bland-Altman plots were
adopted to assess the agreement of ADC and lung morphom-
etry parameters between the FS and DC-RDN reconstructed
images on a slice-by-slice level. All statistical analyses were
performed by using SPSS (version 20.0; IBM), and p < 0.05
was considered statistically significant.

Results

Comparisons with baseline methods

Figure 2 shows the FS and reconstructed DW images with
b = 0 for a healthy volunteer and a COPD patient. It can be
seen that the zero-filling images present severe artifacts
and blurred lung structures. Through the TV and SIDER,
the artifacts are removed and the fine details are recovered
to some extent, but noticeable smooth patterns are pro-
duced in the lung regions. Nevertheless, through the deep
learning–based methods, such artifacts are successfully
eliminated and most of the lung structures are restored. In
the DC-RDN results, the sharpness and details of the lung
are better preserved than the U-Net, especially in the re-
gions indicated by the green arrows in Fig. 2f1 and f2.
These qualitative comparisons are also supported by the
quantitative metrics. The FS images with b = 10, 20, 30,
and 40 cm2/s and the corresponding reconstructed results
are provided in Supplementary Figs. 2 and 3.

For DW images with b = 0, Fig. 3a and b display the mean
MAE and SSIM values obtained using different methods for
the total, healthy, and COPD test data. The healthy and COPD
test data include 5 healthy volunteers and 5 COPD patients,
respectively, and the total test data is the combination of the
healthy and COPD test data. When compared with the two
CS-MRI methods, DC-RDN achieves significantly lower
MAE and higher SSIM values (the mean MAE is 2.5% and
the mean SSIM is 0.9569). DC-RDN also has significantly
lower MAE values and similar SSIM values compared to the
U-Net. For DW images with b = 10, 20, 30, and 40 s/cm2, the
mean MAE and SSIM values are provided in Supplementary
Figs. 4 and 5.

Supplementary Fig. 6 summarizes the results of image
quality scores for the total, healthy, and COPD test data. It
can be seen that both the U-Net and DC-RDN methods get
comparable scores to the FS images in terms of sharpness,
SNR, aliasing artifacts, and overall image quality. In addi-
tion, DC-RDN achieves significantly better image quality
than the two CS-MRI methods in terms of all the scoring
criteria.

For a healthy volunteer and COPD patient, Supplementary
Fig. 7 shows ADC maps derived from the reconstructed im-
ages through different algorithms. It can be seen that the zero-

705Eur Radiol  (2022) 32:702–713

https://github.com


Fig. 2 Reconstructed DW images with b = 0 obtained using the zero-
filling, TV, SIDER, U-Net, and DC-RDN at an acceleration factor of 4.
a1 One slice of FS image from a 23-year-old male healthy volunteer. a2
One slice of FS image from a 62-year-old male patient with COPD. b1,
b2; c1, c2; d1, d2; e1, e2; and f1, f2 Reconstructed results through the
zero-filling, TV, SIDER, U-Net, and DC-RDN, respectively. g1–k1 and
g2–k2 Corresponding differences between the FS images and

reconstructed results. The green arrows indicate fine details of the lung,
which are well preserved by the DC-RDN. Color bar for the difference
images is shown at the bottom. COPD, chronic obstructive lung disease;
DW, diffusion-weighted; FS, fully sampled; MAE, mean absolute error;
SIDER, signal decay into the reconstruction; SSIM, structure similarity;
TV, total variation

Fig. 3 Quantitative comparisons between different reconstruction
methods at an acceleration factor of 4. a, b Average MAE and SSIM
values of b = 0 DW images obtained using the zero-filling, TV, SIDER,

U-Net, and DC-RDN for the total, healthy, and COPD test datasets. c
Average MAEADC through different reconstruction algorithms. * denotes
p < 0.05; ** denotes p < 0.001
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filling and TV lead to large errors in the mean slice ADC
values, and the SIDER results in certain smoothing effects in
the derived ADC maps. In contrast, the U-Net and DC-RDN
methods can provide a favorable overall appearance in the
derived ADC maps, and the DC-RDN owns the smallest
MAEADC values.

For all the test data, Fig. 3c summarizes the average
MAEADC obtained using the zero-filling, TV, SIDER,
U-Net, and DC-RDN. DC-RDN achieves significantly
lower MAEADC values than other methods for the total,
healthy, and COPD test data (the mean MAEADC is
0.0056 cm2/s, 0.0052 cm2/s, and 0.0060 cm2/s,
respectively).

Lung morphometry analysis

Figure 4 shows the lung morphometry maps derived from the
FS and DC-RDN reconstructed images for a healthy volunteer
(a1, b1) and a COPD patient (a2, b2), respectively. It can be
found that all the lung morphometry parameters derived from
the reconstructed results visually resemble those from the FS
images, and there exists a slight bias in the mean slice values
for each morphometry parameter.

Figure 5 shows the Bland-Altman plots of mean ADC and
morphometry parameters derived from the FS and DC-RDN
reconstructed images on a slice-by-slice basis. Two clusters of
data points are observed in the plots, corresponding to the

Fig. 4 Lung morphometry maps derived from the FS and DC-RDN re-
constructed images. a1, b1 and a2, b2Lungmorphometrymaps ofR, r, h,
Lm, and SVR in a 26-year-old healthy male volunteer and a 58-year-old
male patient with COPD, respectively. The mean slice value of each
morphometry parameter is listed under each image. Color bar for the

morphometry maps is shown at the bottom. The color-bar scale is μm
for the R, r, h, and Lm and cm−1 for the SVR. h, alveolar sleeve depth; Lm,
mean linear intercept; R, acinar duct radius; r, acinar lumen radius; SVR,
surface-to-volume ratio
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healthy and COPD groups in the test data. For each clustering
data, there are good agreements between the FS and DC-RDN
results for the six parameters. The mean percentage differ-
ences of ADC, R, r, h, Lm, and SVR values are −0.29%
(95% confidence interval (CI): −1.84% to 1.25%), 0.19%
(95% CI: −1.29% to 1.66%), 0.06% (95% CI: −1.69% to
1.81%), 0.35% (95% CI: −2.19% to 2.89%), 0.17% (95%
CI: −2.04% to 2.38%), and 0.17% (95% CI: −1.73% to
2.07%), respectively. Meanwhile, there are no significant dif-
ferences between the FS and DC-RDN results for such slice
parameters (p > 0.05).

Table 1 provides the global mean values of ADC and
morphometry parameters derived from the FS and DC-
RDN reconstructed images for the 5 healthy volunteers
and 5 COPD patients. For each participant, the global
mean values of ADC, R, r, h, Lm, and SVR derived from
the DC-RDN are nearly identical with the references.
While for all the participants, the corresponding mean dif-
ferences are −0.25%, 0.20%, 0.09%, 0.50%, 0.14%, and
0.10%, respectively. Moreover, for both the FS and DC-
RDN reconstructed images, the global mean values of
ADC and morphometry parameters obtained from the
healthy volunteers are significantly different from those
of the COPD patients (p < 0.001).

In vivo

Figure 6 shows the FS and reconstructed multiple b-value
129Xe DW images for a healthy volunteer at an acceleration
factor of 4. It can be seen that Fig. 6b suffers from severe
oscillatory artifacts and obscured lung structures. After the
DC-RDN, such artifacts are successfully removed, and most
of the structural details are restored. Figure 6d and e show
morphometry maps derived from Fig. 6a and c, respectively.
Figure 6e demonstrates good agreement with Fig. 6d, and the
mean slice values of lung morphometry parameters are similar
between them, confirming good preservation of quantitative
microstructural information during DC-RDN reconstruction.

Table 2 displays the global mean values of ADC, R, r, h,
Lm, and SVR for the 5 healthy volunteers. The respective mean
percentage difference is −0.72%, −0.81%, 0.46%, −1.52%,
−0.74%, and 1.41% between the FS and DC-RDN recon-
structed images. Through the Bland-Altman analysis on a
slice-by-slice basis, the mean percentage differences for the
six parameters are −0.57% (95% CI: −4.75% to 3.61%),
−0.58% (95% CI: −3.93% to 2.78%), 0.68% (95% CI:
−6.27% to 7.63%), −1.46% (95% CI: −8.13% to 5.21%),
−0.28% (95% CI: −5.35% to 4.79%), and 1.17% (95% CI:
−3.33% to 5.67%), respectively.

Fig. 5 Bland-Altman analyses of the mean parameters derived from the
FS and DC-RDN reconstructed images on the slice-by-slice basis in 5
healthy volunteers and 5 COPD patients. a–f Bland-Altman plots of

ADC, R, r, h, Lm, and SVR values estimated from the FS and DC-RDN
reconstructed images, respectively. Solid line indicates the mean differ-
ence and dotted lines indicate the 95% confidence interval
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Discussion

In this work, a novel DC-RDN model is proposed to recon-
struct highly accelerated multiple b-value gas DW-MRI for
lung morphometry. Our results show that DC-RDN can effec-
tively eliminate aliasing artifacts as well as restore detailed
structures of the lung at an acceleration factor of 4.
Meanwhile, DC-RDN outperforms the baseline methods re-
garding MAE, MAEADC, and SSIM terms, as well as image
quality scores. For the healthy and COPD test data, the DC-
RDN reconstructed images are able to accurately estimate
ADC and lung morphometry parameters, which are not sig-
nificantly different from the parameters derived from the FS
images. Furthermore, good agreements in ADC and lungmor-
phometry parameters are observed between the FS and pro-
spectively undersampled datasets, suggesting the clinical po-
tential of the DC-RDN in real accelerated multiple b-value gas
DW-MRI.

Since SIDER explores the prior knowledge of diffusion sig-
nal decay, it can provide better preservation of fine details of the
lung than TV (Fig. 2). Nevertheless, the reconstruction of
SIDER needs pre-estimated model parameters provided by

the TV reconstructed results, resulting in long reconstruction
time [12]. Although TV and SIDER can remove aliasing arti-
facts to some extent, they lead to over-smooth appearances in
lung regions owing to the high acceleration factor. In contrast,
the deep learning–based methods can successfully remove
aliasing artifacts and provide comparable visual quality to the
reference images. Furthermore, DC-RDN can achieve better
performance for recovering fine structures of the lung and lower
reconstruction errors (i.e., MAE andMAEADC) than the U-Net.

At an acceleration factor of 4, DC-RDN has a negligible
influence on the estimation of ADC and lung morphometry
parameters. Moreover, the global mean values of ADC and
morphometry parameters from the healthy and COPD test
data are consistent with those from previous studies [4, 11].
Compared with the healthy volunteers, higher mean values of
R, r, and Lm while lower mean values of h and SVR are ob-
served in the COPD patients. This agrees with previous stud-
ies [4, 10, 11]. For the DC-RDN reconstructed results, the
ADC and morphometry parameters from the COPD patients
are significantly different from those of the healthy volunteers.
This indicates that DC-RDN has potential to detect changes in
lung microstructure associated with COPD.

Table 1 Global mean values of ADC and lung morphometry parameters estimated from the FS images and DC-RDN reconstructed results for the 5
healthy volunteers and 5 COPD patients

Participants Methods ADC (cm2/s) R (μm) r (μm) h (μm) Lm (μm) SVR (cm−1)

Healthy volunteers

H1 FS 0.0326 ± 0.0084 328 ± 53 132 ± 30 196 ± 38 183 ± 33 225 ± 36

DC-RDN 0.0326 ± 0.0083 329 ± 54 133 ± 31 197 ± 39 184 ± 36 224 ± 37

H2 FS 0.0350 ± 0.0119 329 ± 59 144 ± 35 185 ± 47 193 ± 46 216 ± 40

DC-RDN 0.0348 ± 0.0116 330 ± 60 144 ± 38 186 ± 46 194 ± 48 216 ± 42

H3 FS 0.0339 ± 0.0133 326 ± 62 135 ± 43 191 ± 45 187 ± 53 225 ± 47

DC-RDN 0.0339 ± 0.0142 326 ± 62 135 ± 46 191 ± 46 188 ± 56 226 ± 49

H4 FS 0.0388 ± 0.0082 355 ± 66 171 ± 34 184 ± 53 222 ± 53 188 ± 34

DC-RDN 0.0387 ± 0.0081 357 ± 66 172 ± 35 185 ± 55 224 ± 58 187 ± 36

H5 FS 0.0395 ± 0.0107 358 ± 65 169 ± 41 189 ± 57 222 ± 61 189 ± 38

DC-RDN 0.0393 ± 0.0110 358 ± 66 169 ± 41 189 ± 54 223 ± 63 189 ± 39

Patients with COPD

C1 FS 0.0563 ± 0.0146 379 ± 95 257 ± 47 122 ± 81 351 ± 109 124 ± 35

DC-RDN 0.0562 ± 0.0144 382 ± 97 258 ± 50 124 ± 80 354 ± 114 124 ± 38

C2 FS 0.0571 ± 0.0157 376 ± 91 254 ± 49 122 ± 75 343 ± 111 128 ± 36

DC-RDN 0.0567 ± 0.0154 373 ± 91 253 ± 53 119 ± 74 344 ± 115 128 ± 38

C3 FS 0.0485 ± 0.0146 366 ± 91 221 ± 52 144 ± 77 296 ± 107 150 ± 44

DC-RDN 0.0481 ± 0.0149 367 ± 87 220 ± 51 147 ± 77 294 ± 106 151 ± 43

C4 FS 0.0523 ± 0.0117 385 ± 85 242 ± 45 143 ± 74 318 ± 98 136 ± 34

DC-RDN 0.0524 ± 0.0118 388 ± 85 243 ± 47 145 ± 71 315 ± 94 136 ± 34

C5 FS 0.0641 ± 0.0173 414 ± 90 286 ± 67 128 ± 66 370 ± 107 118 ± 36

DC-RDN 0.0643 ± 0.0173 413 ± 88 285 ± 67 129 ± 63 366 ± 105 119 ± 37

Overall mean differences −0.25% 0.20% 0.09% 0.50% 0.14% 0.10%

ADC, apparent diffusion coefficient; COPD, chronic obstructive lung disease; DC-RDN, deep cascade of residual dense network; FS, fully sampled; h,
alveolar sleeve depth; Lm, mean linear intercept; R, acinar duct radius; r, acinar lumen radius; SVR, surface-to-volume ratio

709Eur Radiol  (2022) 32:702–713



For the prospectively undersampled acquisition, the required
breath-holding time is reduced from 17.8 to 4.7 s for multiple b-
value 129Xe DW-MRI. This could be easily tolerable for subjects
even with pulmonary diseases. Alternatively, the time savings
could be used to increase the image resolution and/or the number

of slices. Meanwhile, DC-RDN provides good qualitative and
quantitative agreements with the FS datasets. As shown in
Table 2, a small bias in global mean values of ADC and mor-
phometry parameters is obtained between the FS and prospec-
tively undersampled datasets. The small bias can be negligible

Fig. 6 Prospective reconstruction results for a 23-year-old healthy male
volunteer at an acceleration factor of 4. a–cReconstruction images with 5
b-values obtained using the FS, zero-filling, and DC-RDN, respectively.
d, eMorphometry maps estimated from the corresponding FS images and

DC-RDN reconstructed results, respectively. Color bar for the morphom-
etrymaps is shown at the bottom. The color-bar scale isμm for the R, r, h,
and Lm and cm−1 for the SVR. The mean slice values of morphometry
parameters are listed under each image
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when compared with the large differences in lung microstructure
between healthy and COPD subjects [11, 13].

Successful application of deep learning relies on large and
high-quality training data, which may not be feasible for some
medical imaging problems [40]. This is especially true for
multiple b-value gas DW-MRI due to the limitations of non-
renewable gas hyperpolarization and breath-holding duration
[12]. Training on simulated data is one of the strategies to
eliminate this issue and permit generating large amounts of
training data with diverse experimental conditions [41, 42].
Since DW signal decay of 129Xe in lungs can be well de-
scribed by the cylinder model [9], and ventilation images have
similar characteristics with b = 0 images, we synthetize DW-
MRI training data from hyperpolarized 129Xe ventilation im-
ages in this work. Experimental results demonstrate that DC-
RDN trained on the simulated data can generalize well to both
the retrospectively and prospectively undersampled multiple
b-value 129Xe DW-MRI datasets.

Our study has several limitations. First, the synthetic train-
ing data may be different from real multiple b-value gas DW
images due to the simulation strategy (e.g., different levels of
noise and/or artifacts). The deviations between the training
and testing can be alleviated by fine-tuning the trained DC-
RDN with a small number of real DW-MRI data [24, 43].
Second, the hyper-parameters used in the DC-RDN structure
and training process are empirically selected in this work. This
cannot ensure optimal reconstruction performance. In the fu-
ture, the influence of the hyper-parameters should be exten-
sively evaluated to optimize the network performance. Third,
the feasibility of DC-RDN on prospective acquisition is only
tested on 5 healthy volunteers. However, it would be more

important to validate DC-RDN using pathological cases, such
as patients with COPD or interstitial lung disease. Therefore,
additional evaluation on larger prospective datasets with var-
ious diseases will be performed to further demonstrate the
generalization of DC-RDN in future studies.

In conclusion, a DC-RDN model is developed to ac-
celerate multiple b-value 129Xe DW-MRI for lung mor-
phometry. The DC-RDN is able to provide both high-
quality reconstructed images and good preservation of
quantitative microstructural information, which has clin-
ical potential for studying lung diseases, not only COPD
but also pneumonia, e.g., coronavirus disease 2019
(COVID-19) [44–46].
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Table 2 Global mean values of ADC and lung morphometry parameters derived from the FS and prospectively undersampled acquisitions for the 5
healthy volunteers

Participants Methods ADC (cm2/s) R (μm) r (μm) h (μm) Lm (μm) SVR (cm−1)

H1 FS 0.0353 ± 0.0103 339 ± 58 146 ± 34 194 ± 46 197 ± 44 211 ± 37

DC-RDN 0.0352 ± 0.0106 341 ± 62 150 ± 36 192 ± 45 200 ± 46 209 ± 41

H2 FS 0.0388 ± 0.0093 354 ± 69 173 ± 37 181 ± 57 225 ± 60 187 ± 38

DC-RDN 0.0384 ± 0.0099 353 ± 65 168 ± 40 185 ± 54 221 ± 64 192 ± 40

H3 FS 0.0346 ± 0.0090 340 ± 56 141 ± 32 199 ± 42 193 ± 38 214 ± 35

DC-RDN 0.0347 ± 0.0101 337 ± 63 144 ± 42 194 ± 41 193 ± 43 217 ± 43

H4 FS 0.0390 ± 0.0089 356 ± 67 170 ± 36 186 ± 55 221 ± 52 189 ± 37

DC-RDN 0.0387 ± 0.0098 351 ± 70 173 ± 44 179 ± 48 218 ± 51 192 ± 39

H5 FS 0.0332 ± 0.0075 339 ± 49 139 ± 28 199 ± 37 191 ± 32 215 ± 31

DC-RDN 0.0326 ± 0.0092 332 ± 54 137 ± 34 194 ± 40 187 ± 35 220 ± 39

Mean FS 0.0362 ± 0.0026 346 ± 9 154 ± 16 192 ± 8 205 ± 16 203 ± 14

DC-RDN 0.0359 ± 0.0026 343 ± 9 154 ± 16 189 ± 7 204 ± 15 206 ± 13

Overall mean differences −0.72% −0.81% 0.46% −1.52% −0.74% 1.41%

ADC, apparent diffusion coefficient; COPD, chronic obstructive lung disease; DC-RDN, deep cascade of residual dense network; FS, fully sampled; h,
alveolar sleeve depth; Lm, mean linear intercept; R, acinar duct radius; r, acinar lumen radius; SVR, surface-to-volume ratio
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Statistics and biometry No complex statistical methods were necessary
for this paper.

Informed consent Written informed consent was obtained from all sub-
jects (patients) in this study.

Ethical approval Institutional Review Board approval was obtained.

Methodology
•Prospective and retrospective
•Observational
•Performed at one institution
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