The Design and Synthesis of Fluorinated Dendrimers for Sensitive ¹⁹F MRI

Weijiang Yu,[†] Yuqi Yang,[‡] Shaowei Bo,^{§,⊥} Yu Li,[†] Shizhen Chen,[‡] Zhigang Yang,[†] Xing Zheng,^{§,⊥}

Zhong-Xing Jiang,^{*,†,§} and Xin Zhou[‡]

[†] Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
[‡] Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
[§] Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study (Hunan Provincial Education Department, Approval # 2014-405), Hengyang, 421001, China.
¹ Institute of Pharmacy & Pharmacology, University of South China, Hengyang, 421001, China.

Supporting Information

1. General information	S2
2. Figure S1. ¹⁹ F NMR of dendrons 3 , 10 , 12 , 14 , and dendrimer 1	S2
3. Copies of ¹ H NMR, ¹⁹ F NMR, ¹³ C NMR, MS and HRMS spectra of compo	unds
Copies of ¹ H NMR, ¹⁹ F NMR, ¹³ C NMR spectra, MS and GPC of compound 1	S3-S5
Copies of ¹ H NMR, ¹⁹ F NMR, ¹³ C NMR, MS and HRMS spectra of compound 2	S5-S7
Copies of ¹ H NMR, ¹⁹ F NMR, ¹³ C NMR, MS and HRMS spectra of compound	d 3 S7-S10
Copies of ¹ H NMR, ¹⁹ F NMR, ¹³ C NMR, MS and HRMS spectra of compound	d 6 S10-S12
Copies of ¹ H NMR, ¹⁹ F NMR, ¹³ C NMR, MS and HRMS spectra of compound 7	S13-S15
Copies of ¹ H NMR, ¹⁹ F NMR, ¹³ C NMR, MS and HRMS spectra of compound 8	S15-S17
Copies of ¹ H NMR, ¹⁹ F NMR, ¹³ C NMR, MS and HRMS spectra of compound	d 9 S18-S20
Copies of ¹ H NMR, ¹⁹ F NMR, ¹³ C NMR, MS and HRMS spectra of compound	10 S20-S22
Copies of ¹ H NMR, ¹⁹ F NMR, ¹³ C NMR and MS spectra of compound 11	S23-S24
Copies of ¹ H NMR, ¹⁹ F NMR, ¹³ C NMR and MS spectra of compound 12	S25-S26
Copies of ¹ H NMR, ¹⁹ F NMR, ¹³ C NMR and MS spectra of compound 13	S27-S28
Copies of ¹ H NMR, ¹⁹ F NMR, ¹³ C NMR and MS spectra of compound 14	S29-S30
Copies of ¹ H NMR, ¹⁹ F NMR, ¹³ C NMR spectra of compound 15	S31-S32

1. General information

¹H, ¹⁹F and ¹³C NMR spectra were recorded on a 400 MHz or 500 MHz. Chemical shifts are in ppm and coupling constants (*J*) are in Hertz (Hz). ¹H NMR spectra were referenced to tetramethylsilane (d, 0.00 ppm) using CDCl₃ as solvent or acetone (p, 2.06 ppm) using acetone-*d*, ¹³C NMR spectra were referenced to solvent carbons (77.16 ppm for CDCl₃ or 29.84 ppm for acetone-*d*₆). ¹⁹F NMR spectra were referenced to 2% perfluorobenzene (s, -164.90 ppm) in CDCl₃ or acetone-*d*₆. The splitting patterns for ¹H NMR spectra are denoted as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), b (broad) and combinations thereof. ESI mass spectra were recorded on a LTQ Orbitrap spectrometer. MALDI-TOF mass spectra were recorded using the reflector mode for positive ions with α -cyano-4-hydroxylcinnamic acid as matrix. High resolution mass spectra were recorded on a 7.0 Tesla or 4.7 Tesla FTMS.

¹⁹F MRI experiments of dendrimer **2** were performed on a 9.4 T microimaging system with a 10 mm inner diameter ¹⁹F coil (376.4 MHz) for both radiofrequency transmission and reception. The MSME (Multi Slice Multi Echo) pulse sequence was employed for all MRI acquisitions with single average. FOV=8 x 8 mm², SI=40.0 mm TR=2500 ms and TE=7.6 ms were used for dendrimer **2** and FOV=8 x 8 mm², SI=40.0 mm TR=1000 ms and TE=7.6 ms were used for trifluoroethanol. The data collection time was 160 ms. All raw data were processed using the Matlab.

Unless otherwise indicated, all reagents were obtained from commercial supplier and used without prior purification. DMF, Et_3N and acetone were dried and freshly distilled prior to use. Flash chromatography was performed on silica gel (200-300 mesh) with either EtOAc/petroleum ether (PE, 60-90 °C) as eluents. All reactions were performed under an argon atmosphere.

2. Figure S1. ¹⁹F NMR of dendrons 3, 10, 12, 14, and dendrimer 1

Figure S1. ¹⁹F NMR of dendrons 3, 10, 12, 14, and dendrimer 1 (¹⁹F NMR: 376 MHz, 25 °C, CDCl₃ as solvent).

3. Copies of ¹H NMR, ¹⁹F NMR, ¹³C NMR and MS spectra of compounds

HRMS of building block 2

Building block 3 Instrument	ruker Daltonics, Inc. APEXIII 7.0 TESLA FTMS
Card Serial Number	E140204
Analysis Name	D:\Data\zfj2014\20140114_000034.d
Sample Name	2011134-O-OH
Acquisition Date	5/15/2013 3:45:51 PM
Operator:	zfj
Ionization Mode	ESI-Positive
Ion Mass (Measured)	519.0785
Sum Formula C 17 H 16 F 8 N 2 Na 1 O 6 C 17 H 16 F 18 N 2 Na 1 O 3	Sigma m/z Err [ppm] Mean Err [ppm] Err [mDa] rdb N Rule e^- 0.018 519.0773 -2.25 -2.92 -1.17 6.50 ok even 0.013 519.0800 2.99 2.39 1.55 3.50 ok even
C 20 H 15 F 7 N 2 Na 1 O 5 C 20 H 15 F 11 Na 1 O 2	0.030 519.0761 -4.46 -5.08 -2.31 10.50 ok even 0.023 519.0789 0.79 0.16 0.41 7.50 ok even
20	27 21 00
Dimethyl ether 6 ¹ H (400 MHz, CDCl ₃)	
	f
Foors	F10'9

File Acqu Sam Instr	uired ple Name ument	: E:\\ : 8 / : 201 : Agi : Sha	5973N DA Apr 2014 12185-YW ilent Techr anghai Ma	TE\2014\ 10:36 J-1-3 MV nologies 5 ss spectr	12014/201404/20140408\Snapshot/2014040812.D 36 -3 MW.564 gjes 5973N spectrometry Center, Shanghai Institute of Organic Chemistry								Dee				
丰度	丰度 扫描 14(0. 217 分):2014040812. D\data.ms									Base	e m/z:495	Inter	n:50792				
	80 60 40 20	69	97	1 131 145	181 50	213	²⁵³	267 297	299	349	168 I	411	445			564	n e regel na antina an i parger provins de l'antina de la compañía de la compañía de la compañía de la compañía
m/z	× 40	60 80	4,444,444 100 12		160 180	200 200 220	240 26	0 280	300 320	337 340 360	380 40	43 0 420	3 445 461 440 460	480 500	520 54	0 560	T
m/z 40 53 63 76 85 94 103 112 121 131 140 150 159 205 216 205 234 243 253	RA% 0.6 1.6 2.82 1.31 2.08 1.27 0.78 1.27 0.78 1.27 0.78 1.26 1.34 4.86 2.37 1.95 26.61 0.51 1.95 26.61 0.51 1.95 2.651 1.91 12.72 1.52 1.88 28.05	m/z 41 54 64 77 86 95 104 113 122 141 151 160 169 178 188 197 206 217 226 235 244 254	RA% 0.68 0.37 0.91 1.354 2.54 1.24 1.54 2.81 1.54 2.81 1.64 5.25 0.77 6.38 0.54 4.37 0.54 4.37 0.54 4.37 0.53 2.32 7.9 3.32 7.9 3.35 2.44 9.1	m/z 43 55 65 78 87 96 105 114 123 132 142 152 161 170 179 198 207 218 227 238 225	RA% 0.88 0.6 0.48 0.48 0.48 0.48 0.82 2.33 1.46 0.82 2.33 1.46 1.91 1.15 2.08 1.11 6.45 1.78 3.85 5.76	m/z 44 56 69 79 88 97 106 115 124 134 143 153 162 171 181 190 199 208 219 228 237 246 256	RA% 2.04 0.45 50.02 0.41 1.41 9.24 3.25 0.59 1 1.08 3.48 1.86 3.48 1.86 3.48 1.27 12.46 3.353 1.16 3.03 1.47 10.94 0.63 11.36 1.48 7.08	m/z 45 57 70 89 98 107 116 125 135 135 144 153 172 182 191 200 209 229 238 248 257	RA% 2.23 1.55 1.23 1.01 1.77 1.19 1.5 6.03 1.25 6.03 1.23 0.96 1.03 1.23 0.96 1.1.31 3.78 2.55 2.37 2.56 1.78 4.67 3.68 7.44	m/z 47 59 71 81 90 99 108 117 127 136 145 155 164 173 183 201 210 221 230 229 249 258	RA% 0.43 0.46 0.55 10.18 1.89 4.58 0.9 1.64 11.98 2.45 8.02 5.95 1.03 1.54 1.09 0.8 4.26 0.4 6.35 1.38 5.85 11.54 1.17	m/z 48 60 73 82 91 100 109 118 128 137 147 1565 165 165 174 184 202 211 240 250 259	RA% 0.43 0.34 1.1 0.55 1.09 0.57 4.08 2.49 8.7 10.14 19.8 2.26 4.29 1.19 2.26 4.29 1.19 2.58 3.24 1.3 3.46 3.34 5.55 1.88 1.47	m/z 50 61 74 83 92 101 119 129 138 148 157 185 166 166 175 185 203 213 223 232 241 251 260	RA% 3.77 1.18 4.56 0.81 1.08 0.88 4.52 0.85 2.67 1.14 7.97 0.54 13.19 4.31 2.27 32.16 2.27 32.16 2.27 32.16 2.27 32.16 0.94 4.15 0.94 0.94 0.94 0.94 0.54 1.02 0.94 0.94 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	m/z 51 62 75 84 93 102 111 20 130 130 149 158 167 186 186 185 204 215 204 233 242 252 261	RA% 2.24 1.32 1.39 0.56 1.61 1.91 0.65 1.68 0.66 1.83 3.95 2.91 1.33 4.44 1.86 2.91 2.33 1.62 2.33 1.62 2.20 1 2.45 0.46
	Dimethy	/l ether	6				Shangha Shangha Chinese High Res	i Institu Acader solutior	te of Org nic of Sc MS Dat	ganic Ch iences a Repor	nemistry rt						
Instr	ument: W	aters N	licromas	s GCT F	remier	Ior	nisation N	Mode: E	I+	Electro	on Energy	: 70eV					
Card Samp Open Date	d Serial ple Seri rator: a:	l Numb ial Num Li 20	er: mber: 14/05/0	GC 20	CT-P-T <i>1</i>)12185-	4-04-13 YWJ-1-3	365										
Eler	nental C	Compos	ition R	leport													

Single Mass Analysis Tolerance = 2.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions 398 formula(e) evaluated with 6 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-60 H: 0-80 O: 0-2 F: 0-12 I: 0-1

Minimum:				-1.5				
Maximum:		2.0	5.0	50.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formul	a	
563.9458	563.9459	-0.1	-0.2	26.0	2773048.3	С30 Н	7 02	2 F2 I
	563.9457	0.1	0.2	15.0	2773031.5	C22 H	8 02	2 F7 I
	563.9456	0.2	0.4	4.0	2773017.3	C14 H	9 02	2 F12 I
	563.9447	1.1	2.0	30.0	2773053.3	С33 Н	6 0	FI
	563.9446	1.2	2.1	19.0	2773037.3	C25 H	7 0	F6 I
	563.9444	1.4	2.5	8.0	2773021.3	C17 H	8 0	F11 I

Shanghai Mass Spectrometry Center Shanghai Institute of Organic Chemistry Chinese Academic of Sciences Triol 7 High Resolution MS Data Report Ionisation Mode: EI+ Electron Energy: 70eV Instrument: Waters Micromass GCT Premier GCT-P-T14-04-1366 Card Serial Number: Sample Serial Number: 2012185-YWJ-1-3a Operator: Li 2014/05/05 Date: Elemental Composition Report Single Mass Analysis DBE: min = -1.5, max = 50.0 Tolerance = 2.0 mDa / Element prediction: Off Monoisotopic Mass, Odd and Even Electron Ions 241 formula(e) evaluated with 6 results within limits (all results (up to 1000) for each mass) Elements Used: H: 0-80 O: 0-3 F: 0-12 C: 0-60 -1.5 Minimum: 50.0 5.0 2.0 Maximum: i-FIT Formula Calc. Mass 464.0285 mDa PPM DBE Mass F2 F7 86.8 С31 Нб 03 28.0 0.1 0.2 464.0286 27.4 C23 H7 03 17.0 464.0283 0.3 0.6 F12 6.0 0.8 C15 Н8 03 0.9 464.0282 0.4 02 F C34 H5 32.0 110.0 2.6 464.0274 1.2 02 F6 C26 H6 21.0 44.4 3.0 464.0272 1.4 02 F11 10.0 4.6 C18 Н7 3.4 464.0270 1.6

HRMS of alcohol 8

HRMS of first generation dendron (G₁-OH) 10

