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ABSTRACT: The brain relies heavily on glucose to sustain neuronal and
glial functions, with metabolism closely regulated by both glucose levels and
underlying physiological or pathological states. To investigate this complex
process, a dynamic glucose-enhanced magnetic resonance fingerprinting
(DGE-MRF) approach was implemented at a 9.4 T MRI system, integrating
established multiparametric MRF with DGE-MRI and γ-variate kinetic
modeling to track glucose uptake and clearance in gliomas. Dynamic ΔR1,
ΔR2, and ΔR1ρ curves revealed distinct temporal profiles: ΔR1 peaked early,
reflecting vascular glucose accumulation, whereas ΔR2 and ΔR1ρ captured
slower tissue-level processes. Kinetic modeling using a γ-variate function
demonstrated elevated glucose uptake rates (μin) and greater peak glucose
changes (ΔGmax) in gliomas, while clearance rates (μout) were comparable to
those of controls. Overall, DGE-MRF provides accurate, reproducible, and
region-specific mapping of cerebral glucose kinetics, offering a noninvasive framework for probing metabolic heterogeneity in
gliomas and potential applications in tumor characterization and neurodegenerative disease research.
KEYWORDS: magnetic resonance fingerprinting, dynamic glucose-enhanced, glioma, glucose metabolism, multiparametric mapping,
kinetic modeling

■ INTRODUCTION
The brain is the body’s most energy-demanding organ,
consuming about 20% of total energy, largely through glucose
metabolism. Glucose supplies ATP to fuel neuronal and glial
activity and supports neurotransmitter synthesis and other
critical biochemical processes.1 Furthermore, glucose metabo-
lism is critical for neurotransmitter synthesis, generating vital
metabolic intermediates and precursor molecules that
influence brain function and neural signal transmission.
Therefore, efficient glucose metabolism is fundamental to
sustaining normal brain activity. Abnormalities in glucose
metabolism can contribute to the development of various
diseases, including gliomas, which rely on enhanced glycolysis
and altered cellular environments for growth and survival.2

Quantitative kinetic modeling is essential for understanding
and measuring glucose metabolism. The process can be
described as follows: glucose from the bloodstream crosses the
blood-brain barrier (BBB), enters cells via glucose transporters
(GLUT), and is metabolized to produce ATP and other
molecules. A simple γ-variate model provides a useful
framework for approximating glucose metabolism.3,4 The
process can be characterized by two key parameters: the

glucose uptake rate (μin) and the initial clearance rate (μout).
These metabolic parameters are altered in regions with
abnormal glucose metabolism, such as tumors. To support
their rapid proliferation and high metabolic demands, tumor
cells increase the expression of multiple glucose transporters,
resulting in enhanced glucose uptake.2 This is expected to be
reflected by an increase in μin, while μout may also be
modulated by the increased metabolic activity of tumors.
Current approaches for assessing glucose metabolism

include positron emission tomography (PET) and magnetic
resonance spectroscopy (MRS). 18F-FDG PET remains the
clinical gold standard, enabling highly sensitive and specific
metabolic mapping. It is widely used in diagnosing tumors and
neurodegenerative diseases, as well as in clinical research.5

However, its reliance on radioactive tracers limits its use in
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vulnerable populations and restricts longitudinal studies. MRS
provides a noninvasive alternative by detecting metabolic
intermediates related to glycolysis in the healthy brain.6,7

However, the relatively low sensitivity and spatial resolution
restrict the precise localization of metabolic changes. More
recent MRI-based approaches, such as chemical exchange
saturation transfer (CEST) and chemical exchange spin-lock
(CESL), detect metabolite changes indirectly through
chemical exchange effects.8,9 These techniques have shown
promise for noninvasive glucose imaging, but each is sensitive
to distinct physiological processes and therefore provides
complementary information.10,11

Magnetic resonance fingerprinting (MRF) provides a novel
framework for multiparametric quantitative imaging.12 Unlike
conventional weighted imaging, which provides only semi-
quantitative contrast and requires separate scans for each
parameter, MRF estimates several relaxation times from one
acquisition and thus avoids registration errors between image
sets. By varying acquisition parameters and employing
dictionary-based signal matching, the MRF enables the
simultaneous quantification of T1, T2, and other parameters
within a single rapid scan. This technique enhances imaging
efficiency, reproducibility, and tissue characterization com-
pared with conventional MRI approaches.13 Existing preclinical
two-dimensional (2D) MRF sequences have been applied to
dynamically quantify the transport of gadolinium-based
contrast agents in tumor-bearing mouse models.14 However,
multiparametric MRF has not previously been combined with
dynamic glucose-enhanced MRI and kinetic modeling to study
the glucose metabolism in glioma. Establishing such an
approach would offer a noninvasive platform for characterizing
metabolic heterogeneity in gliomas. In this work, we focus on
three relaxation parameters: T1 (longitudinal relaxation time),
T2 (transverse relaxation time), and T1ρ (spin−lattice

relaxation time in the rotating frame), with T1ρ being
particularly sensitive to slow molecular motion and chemical
exchange. Building on the original MRF framework, several
groups have extended the method to simultaneous mapping of
T1, T2, and T1ρ in phantoms and in vivo, demonstrating robust
agreement with conventional relaxometry and good repeat-
ability.15−18

Building on these developments, we adapted a two-
dimensional FISP-based MRF sequence for simultaneous T1,
T2, and T1ρ mapping during dynamic glucose-enhanced
imaging at 9.4 T MRI in glioma-bearing brains. The sequence
uses adiabatic preparation modules for T1, T2, and T1ρ to
generate distinct contrast weightings, enabling multiparametric
maps to be obtained in a single acquisition with an effective
temporal resolution of 40 s. Although this temporal resolution
is lower than that of single-parameter T1ρ-weighted DGE
protocols, it is sufficient to capture the relatively slow glucose
kinetics of interest.19 An iterative low-rank reconstruction was
applied to recover high-quality T1, T2, and T1ρ maps from
undersampled data. After validation in phantoms, the method
was used in vivo to monitor glucose uptake and clearance
across multiple brain regions following glucose administration.
Finally, a γ-variate kinetic model was fitted to the dynamic data
to quantify regional glucose transport, with particular emphasis
on differences between glioma and contralateral healthy tissue.

■ METHODS

MRF Sequence Design
A DGE-MRF sequence was implemented by adapting a previously
described two-dimensional FISP-based multiparametric MRF frame-
work. The sequence generated T1, T2, and T1ρ maps within a 30.7 s
acquisition, followed by a 9.3 s delay between repetitions, yielding an
effective temporal resolution of 40 s. Each scan was divided into 15
acquisition segments with 100 images acquired per segment and a

Figure 1. Pulse sequence design. (a) Schematic of the MRF sequence. (b) Flip-angle pattern. (c) Adiabatic preparation module. (d) FISP readout
pattern.
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dephasing gradient applied to produce an exact 2π phase dispersion
across each voxel (Figure 1a,d).
To encode relaxation properties, each segment began with an

adiabatic preparation module composed of three inversion recovery
pulses (TI = 20, 100, 400 ms), four T2-preparation pulses with two
adiabatic refocusing pulses (T2pre = 30, 60, 40, 20 ms),

20 and six spin-
lock preparations using adiabatic half-passage and reverse pulses at
different spin-lock times (TSL = 20, 40, 60, 30, 15, 50 ms) with a
spin-lock amplitude of 500 Hz (Figure 1c).21 The use of adiabatic
inversion, refocusing, and spin-lock pulses minimized B1 inhomoge-
neity effects, ensuring uniform magnetization preparation across the
imaging volume, particularly at 9.4 T. This combination of
preparation modules generated distinct signal evolutions across
multiple relaxation pathways, enabling simultaneous quantification
of T1, T2, and T1ρ relaxation times from a single MRF acquisition. A
spoiler gradient along the Z-axis followed each preparation to
eliminate residual transverse magnetization.22

Following the preparation modules, a FISP acquisition module was
applied using low flip angles (5° to 20°) to minimize B1 sensitivity
(Figure 1b). Excitations used 1 ms sinc pulses with 5 lobes. Data were
acquired with a nonuniform spiral trajectory undersampled by a factor
of 24.23 The trajectory fully sampled k-space with 24 spiral interleaves
separated by 15° rotations between adjacent arms, each acquiring 938
data points within a 4.7 ms readout. A 610 ms recovery delay was
included to enhance T1 sensitivity.

24 An additional 9.3 s delay was
introduced between MRF repetitions in this initial DGE-MRF
implementation to limit the overall gradient duty cycle and allow
for complete magnetization recovery before the next repetition.
Additional MRF imaging acquisition parameters were: TR/TE = 11.5
ms/1.1 ms, field of view = 25 × 25 mm2, matrix = 128 × 128, and
slice thickness = 1 mm. Compared with earlier T1, T2, and T1ρ MRF
studies, this work introduces an adiabatic T1ρ preparation optimized
for a 9.4 T preclinical system and applies it to the dynamic MRF
monitoring of glucose uptake and clearance kinetics.
Dictionary Simulation
Signal dictionaries were generated by solving the Bloch equations by
using the acquisition parameters described above. To account for
dephasing in FISP readouts, each fingerprint was modeled as the
vector sum of 81 isochromats with phase increments evenly
distributed over 2π.25 For the phantom study, the dictionary included
463,736 unique parameter combinations. T1 values ranged from 300
to 1400 ms in steps of 20 ms. T2 values ranged from 10 to 100 ms in
steps of 1 ms. T1ρ values ranged from 10 to 100 ms in steps of 1 ms.
For the in vivo study, approximately 1.94 million entries were
simulated with finer sampling. T1 values ranged from 1000 to 3000 ms
with variable step sizes, while T2 and T1ρ values ranged from 20 to 200
ms with progressively coarser steps at higher values.
Image Reconstruction
Undersampled data were reconstructed by using a low-rank subspace
method. A temporal basis set was first estimated from the MRF
dictionary using singular value decomposition (SVD), and the
acquired data were then projected into this subspace. By calculating
the coefficient maps after projection, high-quality time series images
can be reconstructed. The reconstruction problem was formulated
as26−28

PFS c cymin
c

2
2 + * (1)

where P, F, S, Φ, c, and λ denote the undersampling pattern,
nonuniform fast Fourier transform operator, coil sensitivity maps,

temporal bases, coefficient maps, and regularization parameter,
respectively. To ensure the retention of over 99% of the energy
represented by the singular values, the first ten temporal principal
components were selected as temporal bases (Φ1−10). The
corresponding coefficient maps (c1−10) were estimated and sub-
sequently used to reconstruct the T1, T2, and T1ρ maps. Coil
sensitivity maps (S) were estimated using the ESPIRiT method, and
the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) and
conjugate gradient (CG) were employed to iteratively solve the
optimization problem.29,30

Phantom Study
Phantoms containing 20 mM glucose with varying MnCl2
concentrations (0.04 to 0. 3 mM) were scanned on a 9.4 T Bruker
Biospec system. To validate the accuracy of the DGE-MRF method,
the MRF sequence was compared with conventional methods:
inversion recovery spin−echo for T1, multiecho spin−echo for T2,
and spin-lock prepared spin−echo for T1ρ. For T1 mapping,
acquisition parameters were TR = [50, 100, 300, 500, 1000, 2000,
5000, 10000] ms, TE = 6 ms, and scan time = 20.2 min. For T2
mapping, the parameters were TR = 10000 ms, TE = [10, 20, 30,···,
200] ms, and scan time = 16.3 min. For T1ρ mapping, acquisition
parameters were TR/TE = 10000 ms/5.12 ms and TSL = [5, 10, 20,
40, 60, 80, 120, 200] ms, scan time = 14.7 min. The spatial resolution
used in the phantom study was identical to that used in the MRF
sequence. To assess reproducibility, repeated measurements were
performed on the same phantom at different time points.

In Vivo Study
All animal procedures were performed in compliance with the
Institutional Animal Care and Use Committee guidelines of the
Innovation Academy for Precision Measurement Science and
Technology. GL-261 glioma cells (1 × 108 cells/mL, 10 μL) were
injected into the right thalamus of six female C57BL/6 mice (7 weeks
old, 20.0 ± 1.2 g). Imaging was performed 11−14 days post-
implantation. Mice were allowed access to water on the day of the
experiment and did not fast overnight.
During experiments, mice were anesthetized with isoflurane (2−3%

induction, 1−1.5% maintenance). Baseline data were acquired with a
16 min continuous MRF scan. Next, 150 μL of a 50% w/v glucose
solution was injected intravenously (150 μL/min), followed by
continuous MRF imaging for 100 min (Figure 2). Body temperature
was maintained at 37.0 ± 0.2 °C using a heater.
Relaxation maps (T1, T2, and T1ρ) from each time point were

converted to relaxation rates using the relationships R1 = 1/T1, R2 =
1/T2, and R1ρ = 1/T1ρ. Data acquired during the 16 min period before
glucose injection were averaged to establish a baseline. Dynamic
changes were then calculated as ΔR1, ΔR2, and ΔR1ρ relative to
preinjection baseline values. These changes were used as surrogate
measures of the glucose concentration dynamics in brain tissue.
To assess whether DGE-MRF signal changes reflected glucose-

specific metabolic processes rather than nonspecific effects, we
performed a metabolic blockade experiment in 12 healthy female
C57BL/6 mice (10 weeks old, 25 ± 1.4 g). Animals were randomly
assigned to a 2DG group (n = 6) or a control group (n = 6). Mice in
the 2DG group received the glucose uptake inhibitor 2-deoxy-D-
glucose (2DG; 20% w/v, 0.8 g/kg, tail-vein injection) 2 h before the
DGE-MRF scan, whereas control mice underwent the same imaging
protocol without 2DG pretreatment. Two hours after 2DG or control
handling, glucose was administered, and DGE-MRF data were
acquired as described above.

Figure 2. Experimental timeline. D-glucose (150 μL, 50% w/v) was injected intravenously at 150 μL/min.
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Kinetic Modeling
Glucose uptake in the brain is governed by concentration gradients
between blood and tissue and is mediated by glucose transporters.
Once transported into cells, glucose is phosphorylated by hexokinase
to form glucose-6-phosphate. The enzymatic activity of hexokinase is
feedback-regulated by glucose-6-phosphate levels, with high concen-
trations inhibiting hexokinase and slowing metabolism, whereas low
concentrations relieve inhibition and enhance glucose utilization. To
describe glucose uptake and clearance dynamics, a γ-variate function
was employed:3,4

t A t tGlu ( ) ( ) e t t
brain 0

1/ ( )in out 0= · · (2)

where ΔGlubrain is the glucose concentration change in the brain
(mM), μin and μout are uptake and clearance rates (min−1), and A is
the amplitude constant. The γ-variate function has been widely used
in dynamic susceptibility contrast MRI as a compact representation of
bolus-tracking curves, as it captures the asymmetric rise and fall of
concentration−time profiles with few parameters.3 In the context of
DGE-MRF, this form provides a physiologically motivated yet simple
description of the glucose response, allowing uptake and clearance
behavior to be characterized without the additional complexity of full
multicompartment kinetic models.
Because glucose molecules contain five exchangeable hydroxyl

protons that rapidly exchange with bulk water protons, variations in
the glucose concentration induce measurable changes in T2 and T1ρ.
The magnitude of these changes is linearly proportional to glucose
concentration. In this study, ΔR1ρ was used to estimate ΔGlubrain
according to the following equation:11

R

r
Glubrain

1

g
=

(3)

with rg representing the glucose R1ρ relaxivity (s−1·mM−1). The peak
glucose concentration change (ΔGmax, mM) was derived from these
model fits.

Statistical Analysis
Agreement between MRF-derived and conventional relaxation
measurements, as well as reproducibility between repeated scans,
was evaluated using linear regression and Bland−Altman analysis. For
the Bland−Altman method, differences between paired measurements
were plotted against their means, with 95% limits of agreement
indicated.
Parameters of the γ-variate model were estimated by using the

MATLAB function lsqcurvefit. Regional differences in kinetic
parameters across brain areas were analyzed with repeated-measures
ANOVA, followed by Tukey’s post hoc test to correct for multiple
comparisons. Statistical significance was defined as p < 0.05 after
adjustment. All image analysis and data processing were performed
using custom MATLAB scripts (R2023b, MathWorks).

■ RESULTS

Phantom and In Vivo Validation

Phantom experiments showed that relaxation maps derived
from the MRF sequence were consistent with those obtained
by using conventional methods (Figure 3a). Under 24-fold

Figure 3. Validation in phantoms. (a) T1, T2, and T1ρ maps from conventional methods and the MRF sequence. (b) Mean relaxation times with the
dashed red line indicating the line of identity (y = x). (c) Bland−Altman plots comparing the two methods. Black dashed lines show mean bias, and
red dashed lines indicate limits of agreement (±1.96 SD).
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undersampling, relaxation times correlated closely with
reference values, with r2 exceeding 0.94 for all parameters
(Figure 3b). T1 values showed high correlation (r2 = 0.999),
while T2 and T1ρ were slightly underestimated but still well
correlated (r2 = 0.946 and 0.985, respectively). Bland−Altman

analyses indicated narrow 95% limits of agreement centered
near zero, suggesting a limited systematic bias (Figure 3c).
Reproducibility was evaluated through repeated phantom

scans (Figure 4). Test−retest correlations remained high (r2 =
0.999), and Bland−Altman plots showed small mean differ-

Figure 4. Repeatability assessment in phantoms. Regression plots (a−c) and Bland−Altman analyses (d−f) of repeated scans for T1 (a, d), T2 (b,
e), and T1ρ (c, f).

Figure 5. Representative T1, T2, and T1ρ maps from a healthy mouse brain (left column) and a glioma-bearing mouse brain (right column) acquired
with the proposed DGE-MRF sequence.
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ences between scans (14.54 ms for T1, 0.36 ms for T2, and 0.73
ms for T1ρ), confirming stable measurement repeatability.
T1, T2, and T1ρ maps were obtained in both healthy and

glioma-bearing mouse brains under 24-fold undersampling
(Figure 5). The major anatomical structures were clearly
delineated across all three relaxation maps. However, in
cerebrospinal fluid (CSF) regions, T2 and T1ρ values were
slightly underestimated due to CSF flow and diffusion effects
associated with the dephasing gradient. Glioma regions
consistently exhibited elevated relaxation times compared to
the surrounding healthy tissue. Quantitative analysis across
four brain regions confirmed this pattern, with gliomas
showing the highest relaxation values (T1: 2071.21 ± 42.33
ms; T2: 42.29 ± 2.31 ms; T1ρ: 60.94 ± 2.66 ms). In contrast,
the contralateral thalamus demonstrated values (T1: 1749.16 ±
38.02 ms; T2: 30.94 ± 1.43 ms; T1ρ: 39.97 ± 2.06 ms)
comparable to those of other nontumor regions (Figure 6).
Dynamic Mapping of Glucose Transport

Continuous monitoring of ΔR1, ΔR2, and ΔR1ρ after glucose
administration is shown in Figure 7. All three parameters
displayed the expected rise-and-fall pattern of the glucose
metabolism. The temporal evolution of ΔR1 differed from that
of ΔR2 and ΔR1ρ. ΔR1 rose rapidly across the brain, peaking at
∼20 min, with no initial difference between glioma and healthy
tissue. Thereafter, ΔR1 declined in healthy regions but
remained plateaued in gliomas (Figure 7a,b). The mean ΔR1
curves for glioma and contralateral thalamus intersected at
around 40 min, indicating that ΔR1 alone does not provide
stable tumor−normal separation over the full time course.
After this crossover, the ΔR1 maps acquired beyond 40 min

(Figure 7a) show progressively increased contrast between the
tumor and surrounding healthy tissue.
In contrast, ΔR2 and ΔR1ρ exhibited slower dynamics, with

elevated signals emerging first in gliomas and declining
gradually over time (Figure 7c,e). Averaged curves across six
mice confirmed this pattern: both ΔR2 and ΔR1ρ changes were
larger in glioma than in contralateral thalamus, with peak times
delayed relative to ΔR1 (35 min vs 20 min; Figure 7d,f).
Figure 7b,d,f presents the DGE dynamic curves from regions

of interest (ROIs) in tumor and contralateral healthy brain
tissue across six mice. Despite individual variability, all mice
exhibited a consistent trend of an initial increase followed by a
gradual decline. Among the three parameters, ΔR1ρ displayed
the lowest intersubject variance, indicating greater stability and
reliability in reflecting the glucose concentration changes in
brain tissue.
Kinetic Modeling of Glucose Metabolism

Glucose uptake dynamics were quantified by fitting ΔR1ρ
curves with a γ-variate model (eqs 2 and 3). The model
provided robust fits across brain regions, accurately reproduc-
ing both peak responses and subsequent decay. Regional
analysis revealed clear metabolic heterogeneity (Figure 8 and
Table 1). Glioma tissue showed significantly higher uptake
rates (μin: 1.71 ± 0.30 vs 0.93 ± 0.16 min−1, p = 0.009) and
greater peak glucose change (ΔGmax: 31.87 ± 2.69 vs 21.25 ±
2.55 mM, p = 0.001) compared with controls. Clearance rates
were lower in gliomas (μout: 0.018 ± 0.003 vs 0.028 ± 0.008
min−1, p = 0.019). Beyond tumor−control differences,
variations were also observed among healthy regions, under-
scoring the sensitivity of DGE-MRF-based kinetic modeling in
detecting spatially heterogeneous metabolic activity.

Figure 6. Regional relaxation times in glioma-bearing mouse brain. (a) Representative anatomical image showing regions of interest (ROIs) drawn
in glioma, cerebral cortex, thalamus, and entorhinal cortex. (b−d) Violin plots of quantitative T1, T2, and T1ρ values, respectively, in these ROIs.
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2DG Blockade Validates Glucose Specificity
In the 2DG blockade experiment, group-averaged ΔR1, ΔR2,
and ΔR1ρ time courses with and without 2DG pretreatment are
shown in Figure 9. Following glucose injection, both groups
exhibited a rapid increase in ΔR1, but their subsequent
behavior diverged. In the control group, ΔR1 gradually
declined toward baseline, whereas in the 2DG-pretreated
group, the decay was substantially slower (Figure 9a). For ΔR2
and ΔR1ρ, the control group displayed a typical rise-and-fall
pattern, with a clear peak followed by gradual recovery toward
the baseline (Figure 9b,c). In contrast, in the 2DG-pretreated
group, both ΔR2 and ΔR1ρ continued to increase over the
entire 100 min observation window and showed no obvious
clearance. The initial slope of the ΔR1ρ response was also lower
with 2DG, indicating a reduced apparent uptake rate.
Consistent with these observations, γ-variate fitting revealed
reduced effective uptake and clearance rates in the 2DG-
pretreated group compared with controls (2DG vs without
2DG: μin, 0.83 ± 0.12 vs 1.10 ± 0.11 min−1, p = 0.002; μout,
0.014 ± 0.003 vs 0.0296 ± 0.006 min−1, p = 0.001). Together,
these findings support partial inhibition of glucose transport
and metabolism by 2DG and reinforce that the DGE-MRF
signal predominantly reflects glucose-dependent metabolic
processes rather than nonspecific osmotic or hemodynamic
effects.

■ DISCUSSION
In this study, we combined dynamic glucose-enhanced MRI
with multiparametric magnetic resonance fingerprinting
(DGE-MRF) at 9.4 T to obtain simultaneous T1, T2, and

T1ρ maps, together with glucose kinetic parameters in glioma-
bearing mouse brains. Validation experiments demonstrated
close agreement between MRF-derived and conventional
relaxation measurements, confirming the accuracy of the
method. In vivo mapping further distinguished healthy from
glioma-bearing mouse brains, revealing clear structural differ-
ences. The sequence design incorporated adiabatic preparation
pulses to reduce B1 inhomogeneity and a low-rank subspace
reconstruction to suppress undersampling artifacts and
enhance temporal SNR.20,21,26 These choices enabled high-
resolution 2D imaging (0.195 mm) within ∼30 s, with voxel
sizes nearly 30-fold smaller than those typically achievable in
clinical studies. Although higher field strength improved the
SNR, it did not fully compensate for the signal loss from
reduced voxel size. This suggests that the method may also be
well suited for lower field strengths (3 or 5 T), where larger
voxels provide higher SNR. Compared with conventional
DGE-MRI, this approach enhances quantitative accuracy by
directly generating relaxation maps rather than relying on
weighted image fitting, reducing errors associated with motion
and signal quantification. The temporal resolution is longer
than the ∼7 s reported for single-parameter T1ρ-weighted
DGE, but, to our knowledge, this is the first demonstration of
full multiparametric T1, T2, and T1ρ mapping during dynamic
glucose infusion.19 Collectively, these features position DGE-
MRF as a practical and versatile framework for probing
cerebral glucose metabolism.
Phantom validation experiments demonstrated that the

proposed DGE-MRF method achieved good accuracy and
reproducibility. However, slight discrepancies in relaxation

Figure 7. Dynamic changes in ΔR1, ΔR2, and ΔR1ρ after glucose injection in glioma-bearing mouse brains. (a, c, e) Brain tissue contrast images of a
representative glioma-bearing mouse. (b, d, f) Averaged ΔR1, ΔR2, and ΔR1ρ values (mean ± SD, n = 6) in glioma tissue and contralateral normal
brain tissue.
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times were observed compared with those of standard
reference sequences. This difference primarily arises from the
sensitivity of the dephasing gradient used in the readout
module to diffusion effects. When diffusion is not considered,

the use of stronger dephasing gradients in FISP-based MRF
can lead to underestimation of T2 values, particularly in tissues
such as CSF that exhibit high T2 and apparent diffusion
coefficients (ADC).31 As a result, T1, T2, and T1ρ values

Figure 8. Kinetic modeling of cerebral glucose metabolism. (a) Fitted γ-variate curves for glioma, cerebral cortex, thalamus, and entorhinal cortex.
(b−d) Comparison of fitted μin, μout, and ΔGmax parameters across brain regions in six mice. Significance levels: *p < 0.05 and **p < 0.01.

Table 1. Estimates of the Mean (± SD) for Kinetic Parameters in Different Brain Tissues of Glioma-Bearing Mice

glioma cerebral cortex thalamus entorhinal cortex

μin (min−1) 1.71 ± 0.30 1.29 ± 0.24 0.93 ± 0.16 1.02 ± 0.16
μout (min−1) 0.018 ± 0.003 0.025 ± 0.009 0.028 ± 0.008 0.022 ± 0.006
ΔGmax (mM) 31.87 ± 2.69 21.30 ± 2.69 21.25 ± 2.55 22.12 ± 3.91

Figure 9. Effect of the 2DG pretreatment on DGE-MRF relaxation changes. Group-averaged time courses of (a) ΔR1, (b) ΔR2, and (c) ΔR1ρ in
mouse brains after glucose injection were calculated by comparing the 2DG-pretreated group with the untreated control group.
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obtained with DGE-MRF may differ slightly from those
measured by conventional methods. To balance off-resonance
artifact suppression and diffusion sensitivity, a dephasing
gradient of 2π was employed in this study. In future work,
diffusion effects will be explicitly incorporated into both the
pulse sequence and the signal dictionary to further minimize
gradient-induced relaxation bias.
In vivo, the proposed DGE-MRF technique enabled

continuous monitoring of glucose dynamics across different
brain regions, providing insights into both vascular- and tissue-
level processes. After glucose administration, ΔR1, ΔR2, and
ΔR1ρ dynamics showed the expected rise and subsequent
decline.4,32 In glioma-bearing mice, relaxation changes varied
across regions. ΔR1 increased rapidly, peaking at 20 min,
before gradually declining. This early rise likely reflects vascular
glucose accumulation, which increases blood viscosity and
reduces diffusivity, thereby enhancing ΔR1.

33,34 The earlier
ΔR1 peak (20 min) compared with those of ΔR2 and ΔR1ρ
(both 35 min) suggests that ΔR1 is more sensitive to vascular
glucose levels. By contrast, ΔR2 and ΔR1ρ are less affected by
blood flow and better reflect tissue-level changes.32 The
decline in ΔR1 reflects the progressive glucose clearance, which
occurs more rapidly in healthy tissue than in gliomas. The
slower clearance in tumors is likely driven by blood−brain
barrier disruption and increased vascularization, leading to
sustained glucose accumulation in both tumor tissue and
nearby capillaries. Analysis of ΔR2 and ΔR1ρ further revealed
that glioma regions had larger signal changes and higher uptake
rates.35 The differences in ΔR2 may partly reflect micro-
structural effects: infiltration of tumor cells reduces white
matter anisotropy, which otherwise contributes to dipolar
interactions affecting R2.

36 Spin-lock preparation, which
minimizes dipolar angle dependence, makes ΔR1ρ a more
direct indicator of glucose concentration variation.37

To further quantify these dynamics, ΔR1ρ curves were fitted
with a γ-variate model, which captures both uptake and
clearance kinetics. Analysis of the first 100 min of the DGE
curves provided an initial assessment of vascular−tissue
kinetics. Glioma regions exhibited higher μin and ΔGmax than
healthy tissue, consistent with the increased activity and
abundance of glucose transporters in tumor vasculature and
cell membranes. This metabolic adaptation reflects the
imbalance between rapid cellular proliferation and limited
vascular supply, which generates a hypoxic microenvironment.
Under hypoxia, stabilization of hypoxia-inducible factor-1α
(HIF-1α) upregulates GLUT1 and GLUT3 expression,
thereby enhancing glucose uptake and sustaining glycoly-
sis.38,39

Within the tumor microenvironment, accelerated glucose
consumption represents a key metabolic adaptation that
sustains growth. This pattern is consistent with the Warburg
effect, whereby cancer cells preferentially rely on glycolysis
even under aerobic conditions, resulting in markedly increased
glucose utilization.40 In our study, however, μout in tumors was
not significantly higher than in healthy tissue, consistent with
previous reports.35 Two factors may explain this finding. First,
elevated systemic glucose levels may limit the ability of the
tissue to clear glucose efficiently.4 Second, clearance partly
depends on neuronal activity, which is reduced under
anesthesia. Suppressed synaptic activity lowers GLUT-
mediated transport and phosphorylation, thereby reducing
cerebral glucose consumption and influencing the measure-
ment of μout.41

From a metabolic imaging perspective, these findings
indicate that ΔR1ρ provides the most robust tumor−normal
contrast among the three relaxation parameters, consistent
with previous T1ρ-weighted DGE and glucoCESL studies
showing high sensitivity of T1ρ to glucose uptake in
tumors.11,19,42 However, T1 and T2 contribute complementary
information. ΔR1 is mainly driven by changes in vascular and
extracellular glucose concentrations and therefore reflects
blood−brain barrier integrity and perfusion, whereas ΔR2 is
influenced by microstructural changes and intracellular glucose
levels. Joint analysis of ΔR1, ΔR2, and ΔR1ρ can thus help
separate vascular- from tissue-specific contributions to the
DGE signal. In this context, our triparametric DGE-MRF
implementation is best viewed as a platform for comprehensive
metabolic characterization rather than as an attempt to
optimize temporal resolution for T1ρ-based tumor detection
alone. The primary aim of this work is methodological: to
establish and validate a DGE-MRF framework for multi-
parametric mapping of glucose kinetics in vivo using glioma as
an illustrative application rather than the sole focus of
detection.
From a modeling perspective, we chose a γ-variate function

as a simple, yet physiologically grounded, representation of the
DGE-MRF response. This function has been widely used in
dynamic susceptibility contrast MRI to describe bolus-tracking
curves, where the initial rise reflects tracer delivery and the
subsequent decay reflects clearance and redistribution.3 Here,
we applied the same formulation to the ΔR1ρ time course after
glucose injection: the ascending phase is dominated by glucose
delivery and accumulation in the vascular and extracellular
spaces, whereas the descending phase reflects the combined
effects of clearance from the circulation, transport across the
blood−brain barrier, cellular uptake, and downstream metab-
olism.35 In this context, μin and μout are best viewed as
apparent, semiquantitative indices that summarize the overall
response shape rather than absolute metabolic rates. Under the
present experimental conditions, more detailed multicompart-
ment kinetic models would require many additional, weakly
constrained parameters and would therefore increase the risk
of overfitting.
2DG is a glucose analogue that enters cells via GLUT

transporters but cannot be fully metabolized. The presence of
2DG would reduce the effective rate of glucose uptake. Once
inside the cell, 2DG is phosphorylated by hexokinase to 2DG-
6-phosphate, which, unlike glucose-6-phosphate, does not
proceed through glycolysis and therefore accumulates. The
buildup of 2DG-6-phosphate feeds back to inhibit hexokinase,
further limiting glucose phosphorylation and slowing overall
glucose utilization and clearance.43,44 Consistent with this
mechanism, our 2DG blockade experiment indicates that the
DGE-MRF signal predominantly reflects glucose-dependent
metabolism rather than nonspecific changes in the osmolarity
or blood flow. In the control group, ΔR1, ΔR2, and ΔR1ρ all
showed a transient increase after glucose administration,
followed by a gradual return toward baseline. In contrast,
2DG pretreatment markedly altered these time courses: ΔR1
still rose rapidly in both groups but decayed more slowly with
2DG, and ΔR2 and ΔR1ρ in the 2DG group continued to
increase over the entire 100 min observation period without a
clear return to baseline, indicating slower apparent glucose
clearance. The initial ΔR1ρ increase was also less steep after
2DG, consistent with a reduced apparent uptake rate.
Together, these observations support partial inhibition of
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normal glucose metabolism by 2DG and reinforce that changes
in ΔR1, ΔR2, and especially ΔR1ρ primarily capture alterations
in glucose transport and metabolism.
In particular, the reliability and physiological specificity of

μin and μout are constrained by the lack of a directly measured
arterial input function (AIF) for the injected glucose. In the
absence of an explicit AIF, the γ-variate model is fitted directly
to tissue ΔR1ρ curves, so μin, μout, and ΔGmax reflect the
combined effects of the vascular input, transport across the
blood−brain barrier, and tissue metabolism.45 These param-
eters should therefore be viewed as apparent, semiquantitative
indices rather than fully quantitative kinetic rate constants as in
models that incorporate an independent AIF. In small-animal
MRI, robust AIF estimation is challenging because of the small
caliber of cerebral arteries, rapid bolus passage, and strong
partial-volume effects, and the present DGE-MRF protocol was
not optimized for high-temporal-resolution AIF measurement.
Future work will seek to combine higher-temporal-resolution
DGE-MRF acquisitions with dedicated AIF assessment, for
example, by targeting major cerebral arteries or using
independent blood sampling. This integration should enable
more physiologically grounded compartmental modeling and
improve the quantitative accuracy of DGE-MRF−derived
kinetic parameters.46
18F-FDG PET is widely regarded as the clinical reference

standard for assessing glucose metabolism in brain tumors. In
this preclinical study, however, 18F-FDG PET was not acquired
in the same cohort of glioma-bearing mice, so DGE-MRF−
derived μin and ΔGmax cannot be directly compared with the
standardized uptake value (SUV).47 Nevertheless, the elevated
μin and ΔGmax observed in gliomas relative to contralateral
tissue mirror the well-established pattern of increased FDG
uptake in high-grade tumors, where SUV−time curves show a
steeper early rise and higher peak SUV in tumor regions than
in normal brain. These parallels suggest that DGE-MRF
provides information on tumor glucose handling comparable
to FDG PET, while offering higher spatial resolution and
multiparametric readouts without ionizing radiation. Future
multimodal studies that combine DGE-MRF with 18F-FDG
PET in the same animals or in patients will be important to
establish direct quantitative relationships between μin and FDG
SUV.
The framework established here could be extended to

investigate additional metabolic pathways beyond vascular−
tissue glucose exchange, particularly the exchange between
brain parenchyma and CSF.4 Glucose dynamics within the
CSF play an important role in maintaining neuronal energy
homeostasis and reflect both the BBB and blood−CSF barrier
function. Abnormal CSF glucose regulation has been
associated with various neuropathological conditions, including
neuroinflammation, metabolic disorders, and neurodegener-
ative diseases. However, the current 2D FISP-based MRF
sequence is inherently sensitive to diffusion effects arising from
CSF flow, which can introduce signal attenuation and bias in
relaxation parameter estimation, thereby limiting the accuracy
of DGE curve quantification in CSF regions.31 Incorporating
diffusion-weighted or flow-compensated modules into the
MRF framework could help mitigate these confounding effects.
Moreover, transitioning to an accelerated three-dimensional
(3D) MRF acquisition would enable volumetric coverage of
the entire brain and improve the ability to capture glucose
transport across the blood, tissue, and CSF compartments
simultaneously. Such an approach could offer a more

integrated view of cerebral glucose metabolism, facilitating
the exploration of interactions among vascular delivery,
parenchymal uptake, and CSF clearance under both physio-
logical and pathological conditions.
However, this study has several limitations. First, it was

conducted in a relatively small cohort of glioma-bearing mice
(n = 6) and was therefore underpowered to detect subtle
effects or potential sex-related differences. Second, although
anesthesia and general physiology were managed according to
institutional small-animal MRI procedures, continuous invasive
monitoring of the mean arterial pressure, blood gases, and
blood glucose was not performed. Future work will address
these issues by including larger, mixed-sex cohorts with power-
based sample size estimation and by incorporating compre-
hensive physiological monitoring, thereby improving the
robustness and generalizability of the DGE-MRF-derived
metabolic parameters. Future optimization will focus on
reducing the number of sampling modules and shortening
the sequence length, while incorporating inter-repetition delay
times into the magnetization evolution dictionary. Under the
constraints of duty cycle and specific absorption rate (SAR),
these adjustments could substantially enhance temporal
resolution, improving sensitivity to rapid physiological
processes such as AIF characterization. Moreover, such
acceleration would free additional acquisition time for
implementing 3D DGE-MRF with whole-brain coverage.
Besides, temporal fluctuations observed in the relaxation
maps suggest that further optimization of sequence design
and reconstruction is needed. Physics-informed MRF opti-
mization frameworks and accelerated 3D implementations
could improve both measurement stability and temporal
fidelity for future metabolic imaging studies.48

■ CONCLUSIONS
This study demonstrates that the DGE-MRF sequence enables
accurate and reproducible mapping of T1, T2, and T1ρ
relaxation times for the dynamic assessment of brain glucose
metabolism. Phantom experiments confirmed method reli-
ability, and in vivo studies revealed elevated relaxation values,
faster uptake, and greater glucose accumulation in gliomas
compared with healthy tissue, consistent with tumor-driven
metabolic adaptations. By conversion of relaxation maps into
ΔR1, ΔR2, and ΔR1ρ dynamics and application of kinetic
modeling, the approach provided quantitative insights into
glucose uptake and clearance. Although this study was limited
by the absence of arterial input functions and the sensitivity of
2D imaging to CSF flow, future advances in accelerated 3D
MRF and optimized sequence design are expected to
overcome these challenges, enabling whole-brain, high-
resolution metabolic imaging. Beyond oncology, impaired
glucose metabolism plays a central role in neurodegenerative
disorders, and the proposed DGE-MRF framework offers a
promising noninvasive tool for early detection, longitudinal
monitoring, and therapeutic evaluation across a broad range of
neurological diseases.
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