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Synthesis of compounds

Synthesis and characterization of bis(6-(perfluoro-tert-butoxyl)hexyl)amine (FC6) and
bis(12-(perfluoro-tert-butoxyl)dodecyl)amine (FC12).

HO(CH,)1,0C(CF3)3

Compound 1. 1-Bromo-12-dodecanol (16.6 g, 62.7 mmol) was dissolved in DMF, and potassium
perfluoro-tert-butoxide (14.3 g, 52.2 mmol) was added to the solution. The reaction mixture was
stirred at 110°C for 12 h. After thin-layer chromatography (TLC) indicated the reaction was
completed, DMF was removed under reduced pressure. The residue was diluted with CH2Cl> and
washed with water three times. The organic phase was collected, concentrated, and purified by
flash column chromatography on silica gel to yield compound 1 as a clear oil (17.2 g, 78% yield).
"H NMR (500 MHz, CDCl3) 6 3.98 (t, J = 6.5 Hz, 2H), 3.63 (t, J = 6.7 Hz, 2H), 1.70 — 1.61 (m, 2H),
1.59 — 1.51 (m, 2H), 1.40 — 1.22 (m, 16H).

HO(CH,)sOC(CF3)3

Compound 2. Compound 2 was obtained from 6-bromo-1-hexanol (15.0 g, 82.8 mmol) as a clear
oil (22.1 g, 79% yield) by employing the same synthetic procedures as compound 1. '"H NMR
(500 MHz, CDCls) 6 3.99 (t, J = 6.4 Hz, 2H), 3.63 (t, J = 6.6 Hz, 2H), 1.68 (p, J = 6.6 Hz, 2H),
1.57 (p, J = 6.7 Hz, 2H), 1.44 — 1.37 (m, 4H). '3C NMR (126 MHz, CDCls) 6 138.8, 120.6 (t, J =
293.6.0 Hz), 114.6, 80.5 — 79.4 (m), 69.84, 69.83, 62.7, 32.6, 29.8, 25.4, 25.3. "F NMR (471
MHz, CDCls) 6 -73.51. HRMS (ESI): calculated for C1oH13FgKO2* [M+K]* 375.0403, found

375.0321.
2
$-0(CH;)120C(CF3)s

O
Compound 3. To a solution of compound 1 (1.0 g, 2.4 mmol) in CH2Cl2 (10 mL) was added EtsN
(0.48 g, 0.66 mL, 4.8 mmol). After the solution was cooled to 0°C, a solution of p-toluenesulfonyl
chloride (0.92 g, 4.8 mmoll) in CH2Cl2 (10 mL) was slowly added, and the resulting mixture was
stirred at rt for 5 h. After TLC showed that the reaction was completed, the reaction mixture was
washed with saturated aqueous ammonium chloride, and extracted with CH2Cl,. The organic
phase was separated, concentrated, and purified by flash column chromatography on silica gel to
provide compound 3 as a clear oil (1.1 g, 81% yield). "H NMR (500 MHz, CDCl3) 6 7.78 (d, J =
8.4 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 4.00 (dt, J = 12.1, 6.5 Hz, 4H), 2.43 (s, 3H), 1.69 — 1.59 (m,
4H), 1.35(q, J =7.2, 6.8 Hz, 2H), 1.32 — 1.17 (m, 14H). "3C NMR (126 MHz, CDCl3) 6 144.8,
139.3, 133.4, 129.9, 128.0, 124.1, 120.6 (t, J = 294.2 Hz), 114.2, 80.4 — 79.2 (m), 70.7, 69.8, 33.8,
29.7,29.42, 29.40, 29.38, 29.3, 29.1, 28.9, 28.8, 25.30, 25.26. "°F NMR (471 MHz, CDCl3) 6 -
73.48. HRMS (ESI): calculated for C23H31F9NaO4S* [M+Na]*, 597.1692, Found 597.1691.

0]
@#_O(CHz)GOC(CFsb

O
Compound 4. Compound 4 was obtained from compound 2 (7.4 g, 22.0 mmol) as a clear oil (8.7
g, 80% vyield) by employing the same synthetic procedures as compound 3. 'H NMR (500 MHz,
Acetone-de) 6 7.80 (d, J = 8.3 Hz, 2H), 7.48 (d, J = 8.1 Hz, 2H), 4.07 (dt, J = 18.3, 6.3 Hz, 4H),
2.46 (s, 3H), 1.67 (dt, J = 13.4, 6.5 Hz, 4H), 1.48 — 1.19 (m, 4H). '3C NMR (126 MHz, CDCl3) &
144.9, 138.0, 133.3, 129.9, 128.0, 120.5 (t, J = 294.8 Hz), 115.2, 80.4 — 79.5 (m), 70.5, 69.68,
69.67, 29.6, 28.8, 25.1, 24.9, 21.68, 21.65. "°F NMR (471 MHz, Acetone-ds) 6 -71.42. HRMS
(ESI): calculated for C17H19FeKO4S* [M+K]* 529.0492, found 529.0494.

N~ (CH2)120C(CF3)
g ~(CH2)20C(CF s
Compound 5. Under an atmosphere of Ar, to a suspension of K2CO3(400.9 mg, 2.9 mmol) and
Kl (120.4 mg, 0.73 mmol) in dry CH3CN (5 mL) was added a solution of benzylamine (77.7 mg,
0.73 mmol) and compound 3 (500.0 mg, 0.87 mmol) in dry CH3CN (10 mL), respectively. The
resulting mixture was stirred at 80°C for 6 h. Then, a solution of compound 3 (500.0 mg, 0.87

mmol) in dry CH3CN (10 mL) was added to the mixture, and the reaction was stirred at 80°C for
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another 6 h. After TLC showed that the reaction was completed, the reaction mixture was washed
with saturated aqueous ammonium chloride, and extracted with EtOAc. The organic phase was
separated, concentrated, and purified by flash column chromatography on silica gel to provide
compound 5 as a clear oil (599.8 mg, 91% yield). '"H NMR (500 MHz, CDCls) & 7.37 — 7.28 (m,
4H), 7.26 — 7.21 (m, 1H), 4.02 (t, J = 6.5 Hz, 4H), 3.57 (s, 2H), 2.42 (t, J= 7.4 Hz, 4H), 1.73 -
1.64 (m, 4H), 1.52 — 1.45 (m, 4H), 1.42 — 1.36 (m, 4H), 1.34 — 1.26 (m, 28H). '°C NMR (126 MHz,
CDCIs) 6 140.3, 139.2, 128.8, 128.0, 126.6, 120.4 (t, J = 294.2 Hz), 114.0, 80.4 — 79.2 (m), 69.8,
58.7, 53.8, 33.8, 32.0, 29.7, 29.65, 29.59, 29.54, 29.46, 29.2, 29.0, 27.5, 27.0, 25.3, 22.7. '°F

NMR (471 MHz, CDCls) 0 -73.54.
N~ (CH2)60C(CFa)y

g (CHy)sOC(CF3)3
Compound 6. Compound 6 was obtained from compound 4 (4.2 g, 8.6 mmol) as a clear oil (2.3 g,
86% yield) by employing the same synthetic procedures as compound 5. '"H NMR (500 MHz,
CDCI3) 67.35—-7.28 (m, 4H), 7.26 — 7.21 (m, 1H), 3.99 (t, J = 6.5 Hz, 4H), 3.55 (s, 2H), 2.41 (t, J
=7.2 Hz, 4H), 1.66 (p, J = 6.6 Hz, 4H), 1.48 (p, J = 7.2 Hz, 4H), 1.40 — 1.27 (m, 8H). *C NMR
(126 MHz, CDCls) 6 140.3, 129.0, 128.2, 126.8, 120.6 (t, J = 292.3 Hz), 115.2, 80.5 — 79.4 (m),
70.0, 58.8, 53.7, 29.8, 27.0, 25.3. "®F NMR (471 MHz, CDCls) 6 -73.48. HRMS (ESI): calculated
for C27H31F1sKNO2* [M+K]* 782.1699, found 782.1656.

H/(CH2)1200(CF3)3

“(CHy)120C(CF3)s

Compound FC12. Under an atmosphere of Hz, a mixture of compound 5 (1.0 g, 1.1 mmol) and
Pd/C (10% on carbon, 23.3 mg) in dry MeOH (10 mL) was stirred at rt for 12 h. After TLC showed
that the reaction was completed, the mixture was filtrated through a pad of Celite, and the filtrate
was concentrated. The residue was purified by column chromatography on silica gel to give lipid
FC12 as a clear oil (720.9 mg, 80% yield). "H NMR (500 MHz, CDCls) 6 3.97 (t, J = 6.5 Hz, 4H),
2.62 — 2.57 (m, 4H), 1.65 (d, J = 6.6 Hz, 4H), 1.50 (d, J = 7.4 Hz, 4H), 1.35 (t, J = 7.6 Hz, 4H),
1.26 (q, J = 4.8, 3.7 Hz, 28H). '3C NMR (126 MHz, CDCl3) 6 120.4 (t, J = 294.8 Hz), 80.4 — 79.4
(m), 69.8, 49.9, 31.9, 29.8, 29.7, 29.54, 29.52, 29.47, 29.4, 29.3, 29.1, 27.4, 25.2, 22.7. "F NMR
(471 MHz, CDCIz) 6 -73.53. HRMS (ESI) calculated for Ca2HsoF1sNO2* 822.3549, found 822.3547.
H/(CHz)GOC(CF3)3

(CHz)sOC(CF3)s
Compound FC6. Lipid FC6 was obtained from compound 6 (1.0 g, 1.3 mmol) as a clear oil (0.72
g, 82% yield) by employing the same synthetic procedures as lipid FC12. '"H NMR (500 MHz,
CDCl3) 0 3.97 (t, J = 6.4 Hz, 4H), 2.60 (t, J = 7.4 Hz, 4H), 1.65 (p, J = 6.7 Hz, 4H), 1.52 (p, J=7.4
Hz, 4H), 1.43 — 1.27 (m, 8H). '3C NMR (126 MHz, CDCl3) 6 120.6 (t, J = 293.6 Hz), 80.3 - 79.4
(m), 69.80, 69.79, 49.7, 29.8, 29.7, 29.5, 27.0, 25.3. "°F NMR (471 MHz, CDCls) 6 -73.40. HRMS
(ESI) calculated for C2oH2s5F 1sKNO2* [M+K]* 692.1229, found 692.1229.

Synthesis of Cy3-labeled fluorinated lipids.
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Cy3-SM102 Cy3-Ny
\1 (CH2)120C(CF3)3
(CH,)120C(CF3)3

Compound 7. Under an atmosphere of Ar, to a suspension of K2CO3 (30.0 mg, 0.21 mmol) and
Kl (5.0 mg, 0.03 mmol) in dry CH3CN (2 mL) was added a solution of 4-bromobut-1-yne (20.0 mg,
0.15 mmol) and compound FC12 (60.0 mg, 0.07 mmol) in dry CH3CN (5 mL), respectively. The
resulting mixture was stirred at 80°C for 12 h. After TLC showed that the reaction was completed,
the reaction mixture was washed with saturated aqueous ammonium chloride, and extracted with
EtOAc. The organic phase was separated, concentrated, and purified by flash column
chromatography on silica gel to provide compound 7 as a clear oil (31.0 mg, 58% vyield). '"H NMR
(500 MHz, CDCl3) 6 4.00 (t, J = 6.6 Hz, 4H), 3.00 — 2.85 (m, 4H), 1.85 (t, J = 8.1 Hz, 4H), 1.68 (t,
J=7.3 Hz, 4H), 1.30 — 1.27 (m, 35H), 0.89 (t, J = 6.7 Hz, 2H). '"°F NMR (471 MHz, CDCls) & -

73.58.
H (CH2)60C(CF3)s

“(CHo)sOC(CF3)s
Compound 8. Compound 8 was obtained from compound FC6 (60.0 mg, 0.09 mmol) as a clear
oil (16.1 mg, 25% vyield) by employing the same synthetic procedures as compound 7. '"H NMR
(500 MHz, CDCls3) 6 4.00 (t, J = 6.4 Hz, 4H), 3.08 — 2.84 (m, 4H), 1.88 (p, J = 8.1 Hz, 4H), 1.69 (t,
J=6.8 Hz, 4H), 1.59 — 1.00 (m, 12H), 1.07 — 0.74 (m, 1H). '°*F NMR (471 MHz, CDCls) § -73.58.
O

< CH5)1,OC(CF
N‘N N/( 2)120C(CF3)3

(CH2120C(CF3)3
Compound Cy3-FC12. Under an atmosphere of Ar, to a solution of Cy3-N3 (3.0 mg, 0.005 mmol)
in dry THF (2 mL) was added a solution of compound 7 (7.0 mg, 0.08 mmol) in dry THF (2 mL).
Then, 1 mL CuSOs4 (0.2 mg, 0.001 mmol) aqueous solution and 1 mL NaVc (0.5 mg, 0.002 mmol)
aqueous solution were successively added to the reaction mixture. The reaction mixture was
stirred at room temperature for 24 h. After TLC showed that the reaction was completed, the
reaction mixture was washed with water three times. The organic phase was concentrated to
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provide compound Cy3-FC12. HRMS (ESI) calculated for CesHo7F1sN7O3* [M/2+H]* 707.9008,

found 707.1145.
0O
Cy3/l<

N/\/\

H

Z-z

:\>_\; - (CH,)6OC(CF3)3
N N

AN
(CH2)6OC(CF3)3
Compound Cy3-FC6. Compound Cy3-FC6 was obtained from compound 8 (6.0 mg, 0.01 mmol)

by employing the same synthetic procedures as compound Cy3-FC12. HRMS (ESI) calculated
for Cs7H73F18N7O3* [M/2+H]* 623.7350, found 624.1447.

ﬁow O  (CH,),CHs,
N

0]
O)W\/ \/\/\/\)J\O)\(CHZ)7CH3

|
(CH2)10CH3
Compound 9. Under an atmosphere of Ar, to a suspension of NaH (7.0 mg, 0.29 mmol) in dry
THF (2 mL) was added a solution of SM102 (100.0 mg, 0.14 mmol) in dry THF (5 mL). The
reaction mixture was stirred at 0 °C for 0.5 h. Then, dry THF (5 mL) solution of 4-bromobut-1-yne
(37.0 mg, 0.28 mmol) was added to the reaction solution, and the mixture was stirred at room
temperature for 12 h. After TLC showed that the reaction was completed, the mixture was
quenched with ice water. Then THF was evaporated under vacuum and extracted with EtOAc.
The organic phase was separated, concentrated, and purified by flash column chromatography
on silica gel to provide compound 9 as a clear oil (20.4 mg, 19% yield). '"H NMS (600 MHz, CDCls)
65.18 —4.61 (m, 1H), 4.33 —4.05 (m, 2H), 2.72 — 2.70 (m, 3H), 2.56 — 2.42 (m, 4H), 2.32 — 2.28
(m 6H), 1.79 — 1.59 (m, 6H), 1.52 — 1.36 (m, 10H), 1.37 — 1.28 (m, 50H), 0.90 (t, J = 7.0 Hz, 9H).
Cy3

HN—(

N:N\ @
WN/_/

0 o O (CHp),CHs
OMNMO)\(CHZ)7CH3

|
(CH2)10CH3
Compound Cy3-SM102. Compound Cy3-SM102 was obtained from compound 9 (6.0 mg, 0.008

mmol) by employing the same synthetic procedures as compound Cy3-FC12. HRMS (ESI)
calculated for Cg1H134N70e [M/2] 651.1349, found 650.0997.

Molecular docking. Molecular docking was performed using the MOE2019 software package.
The Triangle Matcher algorithm was used for conformational sampling, and the London dG
algorithm was used for scoring. A total of 50 conformations were collected from the docking. The
optimal binding conformation was selected by ranking the conformations based on the docking
score. The 2D interaction diagram was generated using the MOE2019 software, and the 3D
binding schematic was created using PyMOL(1).

MD simulation. Lipid bilayer modeling was conducted using the packmol software package(2).
The SM102 system contained the lipid molecules SM102, DSPC, Cholesterol, and PEG2000 in a
molar ratio of 200: 40: 154: 6. The FC6 system was composed of FC6: SM102: DSPC:
Cholesterol: PEG2000 at a ratio of 100: 100: 40: 154: 6. Similarly, the FC12 system consisted of
FC12: SM102: DSPC: Cholesterol: PEG2000 at a ratio of 100: 100: 40: 154: 6. Each system also
included 19800 water molecules and 200 CI- ions to neutralize the system charge. The box sizes
of SM102, FC6, FC12 systems are 10.5x10.5x8.0 nm?, 12.0x12.0x8.0 nm3 and 13.0x13.0x8.0
nm3 respectively.
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The molecular dynamics simulations followed the standard protocol. Initially, energy minimization
was performed for a maximum of 5000 steps using the steepest descent algorithm. This was
followed by a 5-step NPT ensemble pre-equilibration for a total of 1875 ps, during which restraints
were applied to the protein and the bilayer. The production phase of the simulation was run for
500 ns using Gromacs2023 software(3). A cutoff distance of 1.2 nm was used for both Coulombic
and Van der Waalls interactions. The simulation temperature was maintained at 300 K using the
Nose-Hoover temperature coupling method, and the pressure was controlled at 1 bar using the
Parrinello-Rahman method with a semiisotropic pressure coupling scheme. The Particle-mesh
Ewald (PME) method was employed to handle long-range electrostatic interactions. All analyses
were performed on the final 200 ns of the trajectory.

The Area per Lipid (APL) is defined as the average area occupied by a lipid in the plane of the

lipid bilayer. It is calculated using the following forénula:

=— (Y]

Where S represents the area of the bilayer plane and N is the total number of lipids in the

bilayer system.

The Lateral Diffusion (LD) coefficient measures the mobility of lipids within the bilayer system. A

higher LD value indicates greater fluidity. It is calculated from the Mean Squared Displacement

(MSD) as follows:
O=10O- OP )
= () ©

Here, MSD(t) is the mean squared displacement of the lipid at time t, r(t) is the coordinate of the
center of mass of the lipid type in the bilayer plane at time t, r(0) is its initial coordinate, and d
represents the dimensionality (d=2 for this system).

The Deuterium Order Parameter (Scp) is used to describe the flexibility of the lipid tails. A larger
Sco value indicates that the fatty acid long chains of the lipid tails are straighter, more rigid, and
more ordered. The formula for its calculation is:

=fe 2 -1 @)

i denotes the carbon atom number in the lipid tail, and 8 represents the angle between the C-H
bond vector of that carbon atom and the vector of the positive z-axis.
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Fig. S1. LNP encapsulation protects pDNA from degradation by DNase |. Agarose gel retardation
assays of LNPs treated with or without DNase | and heparin, free pEGFP was used as a control.
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Fig. S3. Normalized TNS fluorescence intensity as a function of pH for LNPs loaded with DNA (a)
or mRNA (b). The apparent pKa was determined by nonlinear regression and defined as the pH at
which fluorescence reached half of its maximum intensity.
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hours. Nuclei stained with DAPI (Blue). Scale bar = 100 um.
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Fig. $10. Representative confocal images of LNP endosomal escape in 293T cells treated with
Cy5-labeled LNPs for 2 h, stained with LysoTracker Green and Hoechst 33342. Scale bar = 10
pm.
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Fig. S11. "F MRS of LNP-25%FC6 and 293T cells treated with LNP-25%FC6 for 48 h. 2 mM of

CF3NaOsS (-79.6 ppm) were used as the '°F MRS reference.
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Fig. $12. The ""F MRS of LNP-25%FC6 (-71.3 ppm) and mice intramuscularly injected with LNP-

25%FC6 for 48 h.
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Fig. $13. The "°F MRS of gastrocnemius muscle lysate after treatment with LNP-25%FC12 for

48h. 1 mM of CF3NaOsS (-79.6 ppm) was used as the '°F MRS reference.
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Fig. S14. a. EGFP protein expression detected by immunohistochemistry staining of
gastrocnemius muscle after treatment with pEGFP-loaded LNPs or PBS for 48 h. Scale bar = 100
pum. b. Representative H&E staining of gastrocnemius muscle tissues harvested from the mice
receiving different LNP treatments. Scale bars: 100 um.
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Fig. S15. LNP-mediated mLuc mRNA delivery. 293T cells were treated with mLuc-loaded LNP
(10 ng) or free mRNA (10 ng per well) for 24 h. (n = 3)
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Fig. S16. Representative fluorescent images of EGFP protein expression in 293T cells following

treatment with mEGFP-loaded LNPs for 24 h. Scale bar = 100 ym. B. LNP-mediated mEGFP

delivery (n = 3). 293T cells were treated with mEGFP-loaded LNP (400 ng) or free mEGFP (400

ng per well) for 24 h.
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Fig. $S17. a. EGFP protein expression detected by immunohistochemistry staining of
gastrocnemius muscle after treatment with mEGFP-loaded LNPs or PBS for 24 h. Scale bar =
100 um. b. Representative H&E staining of gastrocnemius muscle tissues harvested from the
mice receiving different mEGFP-loaded LNPs treatments. Scale bars = 100 um.
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Table S1. The formulation and characterization of pDNA-loaded LNPs. The hydrodynamic
diameter and PDI of LNPs were obtained by DLS measurement in PBS (pH = 7.4). -potential
was obtained by DLS measurement in H20. Data are presented as mean + SEM (n = 3).

LNP Recipe Diamete | PDI Zeta Encapsul
r (nm) potenti | ation
al efficiency
(mV) | (%)
LNP- SM102:DSPC:Chol:DMG- 107 +7 | 0.141+0.014 |4+3 80.0+3.4
SM102 PEG2000 = 50:10:38.5:1.5
LNP- FC12:SM102:DSPC:Chol:DM 117 +5 | 0.194+0.003 |7+4 825+24
25%FC12 | G-PEG2000 =
25:25:10:38.5:1.5
LNP- FC6:SM102:DSPC:Chol:DMG- | 101 +4 | 0.144 + 0.003 10+2 [ 79.8+3.9
25%FC6 PEG2000 = 25:25:10:38.5:1.5
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Table S2. The T1 and T2 of fluorinated lipids and FLNPs.

Category Title T1 (ms) T>(ms)
Fluorinated lipids FC12 603.1 4441
FCé 561.9 164.4
FLNPs LNP-25%FC12 156.5 55
LNP-25%FC6 442.2 10.3
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Table S3. The formulation and characterization of mMRNA-loaded LNPs. The hydrodynamic
diameter and PDI of LNPs were obtained by DLS measurement in PBS (pH = 7.4). -potential
was obtained by DLS measurement in H20. Data are presented as mean + SEM (n = 3).

LNP Recipe Diameter | PDI Zeta Encapsul
(nm) potenti | ation
al efficiency
(mV) | (%)
LNP-SM102 SM102:DSPC:Chol:DMG- 75+5 0.140 2+1 92.3+3.2
PEG2000 = 50:10:38.5:1.5 0.014
LNP-25%FC12 | FC12:SM102:DSPC:Chol:DM | 79+ 10 0.154 + 15+1 | 98615
G-PEG2000 = 0.022
25:25:10:38.5:1.5
LNP-25%FC6 | FC6:SM102:DSPC:Chol:DMG- | 87 £ 6 0.177 9+2 96.1+0.4
PEG2000 = 25:25:10:38.5:1.5 0.014
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290  TH/'3C/'®F NMR and MS Spectra of Compounds

291  'H NMR of compound 2
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3C NMR of compound 2
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297  "F NMR of compound 2
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300  "H NMR of compound 3
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3C NMR of compound 3
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309  "H NMR of compound 4
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3C NMR of compound 4
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"H NMR of compound 5
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2C NMR of compound 5
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F NMR of compound 5
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327  'H NMR of compound 6
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330  "3C NMR of compound 6
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"H NMR of compound Lipid FC12
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13C NMR of compound Lipid FC12
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345  "H NMR of compound Lipid FC6
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348  "3C NMR of compound Lipid FC6
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351 °F NMR of compound Lipid FC6
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354 HRMS spectra of compound Cy3-FC12
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