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Abstract
Objectives Susceptibility-weighted imaging (SWI) is crucial for the characterization of intracranial hemorrhage and mineraliza-
tion, but has the drawback of long acquisition times. We aimed to propose a deep learning model to accelerate SWI, and evaluate
the clinical feasibility of this approach.
Methods A complex-valued convolutional neural network (ComplexNet) was developed to reconstruct high-quality SWI from highly
accelerated k-space data. ComplexNet can leverage the inherently complex-valued nature of SWI data and learn richer representations by
using complex-valued network. SWI data were acquired from 117 participants who underwent clinical brainMRI examination between
2019 and 2021, including patients with tumor, stroke, hemorrhage, traumatic brain injury, etc. Reconstruction quality was evaluated
using quantitative imagemetrics and image quality scores, including overall image quality, signal-to-noise ratio, sharpness, and artifacts.
Results The average reconstruction time of ComplexNet was 19 ms per section (1.33 s per participant). ComplexNet achieved
significantly improved quantitative image metrics compared to a conventional compressed sensing method and a real-valued
network with acceleration rates of 5 and 8 (p < 0.001). Meanwhile, there was no significant difference between fully sampled and
ComplexNet approaches in terms of overall image quality and artifacts (p > 0.05) at both acceleration rates. Furthermore,
ComplexNet showed comparable diagnostic performance to the fully sampled SWI for visualizing a wide range of pathology,
including hemorrhage, cerebral microbleeds, and brain tumor.
Conclusions ComplexNet can effectively accelerate SWI while providing superior performance in terms of overall image quality
and visualization of pathology for routine clinical brain imaging.
Key Points
• The complex-valued convolutional neural network (ComplexNet) allowed fast and high-quality reconstruction of highly
accelerated SWI data, with an average reconstruction time of 19 ms per section.

•ComplexNet achieved significantly improved quantitative imagemetrics compared to a conventional compressed sensingmethod and
a real-valued network with acceleration rates of 5 and 8 (p < 0.001).

• ComplexNet showed comparable diagnostic performance to the fully sampled SWI for visualizing a wide range of pathology,
including hemorrhage, cerebral microbleeds, and brain tumor.
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Abbreviations
CMBs Cerebral microbleeds
CNN Convolutional neural network
ComplexNet Complex-valued convolutional neural network
CS Compressed sensing
GRE Gradient echo
MARS Microbleed Anatomical Rating Scale
PSNR Peak signal-to-noise ratio
R Acceleration rate
RealNet real-valued convolutional neural network
SSIM Structural similarity
SWI Susceptibility-weighted imaging

Introduction

Susceptibility-weighted imaging (SWI) is a powerful tool for
clinical brain imaging due to its particular sensitivity for deox-
ygenated blood and intracranial mineral deposition [1].
Consequently, SWI has been widely applied for imaging a
broad range of pathology, including intracranial hemorrhage,
cerebral microbleeds (CMBs), traumatic brain injury, hemor-
rhagic or calcified neoplasms, and neurodegenerative disorders
associated with mineralization or brain iron accumulation
[1–3]. However, SWI requires a long echo time to build up
the phase contrast [4], which necessitates relatively long acqui-
sition times that may contribute to motion artifacts and patient
anxiety [1, 4]. Long acquisition time also limits the spatial
resolution and slice thickness in routine clinical SWI.

SWI typically uses a T2*-weighted gradient echo (GRE) se-
quence for data acquisition, and then combines both magnitude
and phase information to enhance contrast in T2*-weighted im-
ages [1, 4]. To accelerate SWI data acquisition, one effective
approach is to undersample k-space data and then reconstruct it
using additional information [4, 5]. Traditionally, reconstructing
images from undersampled data involves leveraging techniques
such as parallel imaging and compressed sensing (CS) [6, 7].
However, parallel imaging suffers from noise amplification at
high acceleration rates (R), and CS reconstruction is computa-
tionally expensive and typically requires empirical tunning of
regularization parameters [5], which is challenging to deploy in
real clinical applications.

Recently, deep learning has gained great interest for
reconstructing undersampled MRI data, providing improved
performance in both reconstruction quality and speed [8–10].
Even though MRI data are inherently complex-valued in na-
ture, most of deep learning–based reconstruction methods em-
ploy real-valued operations and representations by treating
real and imaginary components as two independent channels
[6, 11]. Nevertheless, such strategy potentially alters the phase
information during reconstruction because different weights
are applied to the two input channels [6]. To faithfully recon-
struct both MR magnitude and phase images, a few studies

have proposed to apply complex-valued networks to MRI
reconstruction [6, 11–14]. In particular, Cole et al demonstrat-
ed that complex-valued networks can enable superior
undersampled MRI reconstruction and phase-based applica-
tions compared to real-valued networks [6].

The purpose of the present studywas to develop a novel deep
complex-valued convolutional neural network (ComplexNet)
for fast and accurate reconstruction of highly accelerated SWI
data, and investigate its performance in terms of reconstruction
quality and visualization of pathology in clinical brain imaging.

Materials and methods

Study participants

This study was approved by the Institutional Review Board
and informed written consent was obtained. GRE (SWI) data
were prospectively acquired from participants undergoing a
clinical brain MRI examination between July 2019 and
May 2021. There were no exclusion criteria beyond those
for routine clinical MRI.

Data acquisition and preprocessing

The GRE data were acquired on a 3.0-T scanner (Discovery
MR750; GE Healthcare) equipped with an 8-channel brain
coil, using an enhanced T2*-weighted angiography sequence.
Relevant imaging parameters included repetition time = 30.6
ms, echo time with 12 echoes ranging from 3.1 to 27.6 ms,
matrix size = 256 × 256, field of view = 240 × 240 mm2, flip
angle = 12°, bandwidth = 62.5 kHz, slice thickness = 2 mm,
number of slices = 60 to 80, twofold undersampling in the first
phase-encoding direction, and a total acquisition time of ap-
proximately 3 min.

The GRE data were reconstructed directly on the MR scan-
ner and were saved as magnitude and phase images into
DICOM files. The magnitude and phase images were then
combined as complex images that were used as a “fully sam-
pled” reference in the network training. Because SWI is usu-
ally generated from single-echo GRE acquisition [15], the
GRE data with echo time = 23.0 ms [3] were selected to train
and evaluate ComplexNet for SWI application. The dataset
was split into 2D axial slices of 70 participants for training,
12 participants for validation, and 35 participants for testing. It
should be noted that there is no data overlapping between the
training dataset, validation dataset, and test dataset.

The volume data of each participant was split into axial
slices of size 256 × 256, with each slice serving as a separate
training example. The undersampled data were generated by
retrospectively undersampling the reference k-space data
using a sampling pattern library consisting of 3000 different
two-dimensional variable-density random undersampling
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masks [16]. For each undersampling mask, a region of 20 × 20
was consistently fully sampled in the k-space center, and two
acceleration rates (R = 5 and R = 8) were investigated. In a
prospective way, the scan time could be reduced by approxi-
mately 80% (144 s) for R = 5, and 87.5% (157.5 s) for R = 8
compared to the fully sampled acquisition.

Network architecture

The proposed ComplexNet for reconstruction of highly
undersampled GRE data is shown in Fig. 1, which forms an
unrolled network architecture by repeating convolutional neu-
ral network (CNN) modules and data consistency layers sev-
eral times [17]. We adopt the complex residual network as the
CNN modules to represent complex GRE data and accurately
recover both MR magnitude and phase images. Furthermore,
each CNN module is followed by a data consistency layer to
ensure consistency with the physically measured k-space data
[18]. In each reconstruction module, four complex
convolutional layers, with a 3 × 3 kernel size and 128 feature
maps, are sequentially applied to extract abundant features.
Then, a complex convolutional layer with a 1 × 1 kernel size
is used to reconstruct the residual images. Each complex
convolutional layer, except for the last layer, is followed by
a complex-valued activation function [6]. The details of the
network architecture are described in Supplementary material.

Implementation and training

ComplexNet was implemented using the TensorFlow package
(version R2.5; https://tensorflow.google.org). All training and
testing were performed on a desktop computer with an Intel

Xeon® Gold 6226R CPU, 128 GB RAM, and an RTX 3090
GPU. During the training process, the network weights were
initialized using a previously described method [12] and were
optimized using the Adam algorithm [19], with a fixed
learning rate of 0.0002, β1 = 0.9, β2 = 0.999, and batch size
of 8. The training parameters were optimized on the validation
dataset (see details in Supplementary material). The mean-
squared error between the reconstructed results and the refer-
ence images was chosen as the loss function. The total training
time was approximately 24 h for 200 epochs.

Once the training process was completed, the parameters of
the ComplexNet were fixed and can be adopted for effective
and direct transformation of new accelerated GRE data to the
corresponding reconstruction results. After obtaining high-
quality reconstruction of the GRE data, standard SWI process-
ing was performed to produce high-pass filtered phase images
and associated SWI images using SEPIA software [20].

Evaluation

ComplexNet was compared with a conventional CS-MRI
method and a real-valued convolutional neural network
(RealNet) with the same unrolled architecture as ComplexNet,
using the standard real-valued activation function and
convolutional layers. CS-MRI reconstruction was implemented
inMATLAB (version 2018a;Mathworks) based on thewavelet
sparsifying transform and total variation regularization [21].
RealNet was implemented on TensorFlow using fewer feature
maps to match the number of parameters of ComplexNet [6].

The reconstruction results of GRE data were evaluated
using two quantitative metrics: peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) [22]. PSNR was

Fig. 1 The scheme of the ComplexNet for reconstruction of highly
accelerated GRE data. ComplexNet takes zero-filling images as input,
and outputs high-quality reconstruction of GRE data. CNN,
convolutional neural network; ComplexNet, complex-valued

convolutional neural network; ComplexConv, complex convolutional
layer; CReLU, complex rectified linear unit; GRE, gradient echo; SWI,
susceptibility-weighted imaging
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evaluated on complex-valued images to account for differ-
ences in both magnitude and phase images, and SSIM was
only evaluated on the magnitude images [6]. In addition, the
SWI images with blinded reconstruction information were
individually evaluated by two experienced radiologists (with
5 and 7 years of experience in brain MRI interpretation) in
terms of overall image quality, SNR, sharpness, and artifacts
with scores ranging from 1 to 5 [8]. Scoring criteria are shown
in Supplementary Table 1.

To provide a quantitative assessment of the diagnostic per-
formance of ComplexNet, the number and location of the
CMBs were also evaluated by the two radiologists indepen-
dently with blinded reconstruction information [2, 23]. The
detection and counting of the CMBs were based on the
Microbleed Anatomical Rating Scale (MARS) [24]. Cases
with gross structural lesions that may limit the reliability of
the CMB counts were excluded [2]

Statistical analysis

Paired two-tailed Student’s t tests were performed to compare
the quantitative image metrics between the different recon-
struction methods. McNemar tests were used to compare the
dichotomous variables (the presence of CMBs), and the
Wilcoxon signed rank tests were used to compare the ordinal
variables (image quality scores and the number of CMBs)
between the fully sampled and ComplexNet approaches [2].
To assess noninferiority of ComplexNet to the fully sampled
method, a two-sided 95% confidence interval for the differ-
ence in image quality scores between the two methods was
calculated [25]. The noninferiority margin for the difference
was set as − 0.5 score points according to a previous study
[26].

The interobserver agreement for the presence and numbers
of CMBs on the ComplexNet and fully sampled approaches
was assessed by using the kappa value and intraclass correla-
tion coefficient, respectively. The kappa and intraclass corre-
lation coefficient results were interpreted according to a pre-
vious study [23]. All statistical analyses were performed using
SPSS (version 24.0; IBM), and statistical significance was set
at p < 0.05.

Results

Clinical characteristics of the study participants are summa-
rized in Table 1. The SWI data were acquired from 117 par-
ticipants (mean age, 53 years ± 17; 73men), including patients
with tumor, stroke, Parkinson’s disease, dizziness, hemor-
rhage, traumatic brain injury, and other conditions.

Figure 2 shows representative SWI images obtained using
different reconstruction methods at R = 5 (top row) and R = 8
(bottom row) in a 40-year-old man with multiple cerebral

microbleeds. The corresponding magnitude and phase images
are provided in Supplementary Fig. 2. It can be seen that the
zero-filling images show severe artifacts and blurred struc-
tures due to sub-Nyquist sampling. Although the CS-MRI
reconstruction can remove the artifacts to some extent, it leads
to noticeable smooth patterns and loss of image details, as
indicated by the golden arrows in Fig. 2(b1 and b2).
Nevertheless, the deep learning–based methods (i.e.,
RealNet and ComplexNet) generate nearly artifact-free SWI
images with well-preserved sharpness and structures compa-
rable to the fully sampled images, and ComplexNet achieves
superior quantitative metrics than RealNet. Average recon-
struction time is 19 ms per section (1.33 s per participant)
for ComplexNet in TensorFlow on the RTX 3090 GPU.

Table 2 summarizes the mean PSNR and SSIM values
obtained using different algorithms at R = 5 and R = 8 for all
the test data. Mean PSNR and SSIM values for ComplexNet
range from 32.65 ± 2.30 and 0.9156 ± 0.0258 at R = 8 to 35.26
± 2.3 and 0.9377 ± 0.0186 at R = 5, respectively. For both R =
5 and R = 8, ComplexNet and RealNet achieve significantly
better image quality than CS-MRI (p < 0.001). Moreover,
ComplexNet consistently outperforms RealNet at both accel-
eration rates (p < 0.001).

Figure 3 summarizes the results of image quality scores for
the fully sampled and ComplexNet approaches at R = 5 and R =
8. There is no significant difference between fully sampled and
ComplexNet approaches at R = 5 in terms of all the evaluation
criteria, including overall image quality (p = 0.47; mean score
± standard deviation, 4.4 ± 0.4 for ComplexNet and 4.5 ±
0.6 for the fully sampled approach), SNR (p = 0.11; mean
score, 3.9 ± 0.4 for ComplexNet and 4.0 ± 0.7 for the fully

Table 1 Clinical
characteristics of the
study participants

Variable Value

No. of patients 117

Age (years)* 53 ± 17

Sex

Male 73 (62)

Female 44 (38)

Clinical indication for MRI

Tumor 24 (20.5)

Stroke 18 (15.4)

Healthy 14 (12.0)

Parkinson’s disease 11 (9.4)

Dizziness 8 (6.8)

Hemorrhage 7 (6.0)

Traumatic brain injury 5 (4.3)

Other 30 (25.6)

Note: Unless otherwise specified, data are
the number of participants, with percent-
ages in parentheses

*Data are means ± standard deviations
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sampled approach), sharpness (p = 0.19; mean score, 4.0 ±
0.3 for ComplexNet and 4.2 ± 0.6 for fully sampled ap-
proach), and artifacts (p = 0.54; mean score, 3.9 ± 0.3 for
ComplexNet and 3.8 ± 0.7 for the fully sampled approach).
At R = 8, ComplexNet achieves slightly lower scores than
the fully sampled approach in terms of SNR (p = 0.01; mean
score, 3.8 ± 0.4 for ComplexNet) and sharpness (p = 0.03;
mean score, 4.0 ± 0.4 for ComplexNet), with no significant
difference in overall image quality (p = 0.08; mean score,
4.3 ± 0.7 for ComplexNet) and artifacts (p = 0.59; mean
score, 3.9 ± 0.5 for ComplexNet).

The results of noninferiority testing are shown in
Supplementary Fig. 3. Since the lower limits of the two-
sided 95% confidence intervals for the difference are all above
the predefined noninferiority margin (− 0.5 score points), the

noninferior of ComplexNet to the fully sampled method in
terms of image quality scores was inferred.

Representative SWI images comparing the fully sam-
pled and ComplexNet approaches in the presence of path-
ologic diseases are shown in Figs. 4 and 5. In Fig. 4,
ComplexNet shows a similar diagnostic image quality as
the fully sampled approach for visualization of pathology,
including extensive susceptibility effect in traumatic brain
injury, ring-like susceptibility effect in cerebral hemor-
rhage, and scattered foci of susceptibility effect in arterio-
venous malformation. SWI images in Fig. 5(b1–b3) show
internal architecture and hemorrhages within the brain tu-
mor, which could be also clearly captured in the SWI im-
ages obtained using ComplexNet at both R = 5 (Fig. 5(c1–
c3)) and R = 8 (Fig. 5(d1–d3)).

Fig. 2 Representative SWI images in a 40-year-old man with multiple
cerebral microbleeds for comparison of different reconstruction methods
at R = 5 (top row) and R = 8 (bottom row). ComplexNet showed the
highest image quality with well-preserved sharpness and clear

visualization of scattered microbleeds in the right lateral ventricle
(golden arrows). CS-MRI, compressed sensing MRI; PSNR, peak
signal-to-noise ratio; R, acceleration rate; RealNet, real-valued
convolutional neural network; SSIM, structure similarity

Table 2 Comparison of
quantitative image metrics on test
datasets with different
reconstruction methods at R = 5
and R = 8

Methods R = 5 R = 8

PSNR SSIM PSNR SSIM

Zero-filling 24.24 ± 2.1 0.3782 ± 0.0509 23.14 ± 2.09 0.3485 ± 0.0491

CS-MRI 31.42 ± 2.41 0.8708 ± 0.0628 28.85 ± 2.42 0.7698 ± 0.0943

RealNet 35.10 ± 2.2 0.9282 ± 0.0193 32.53 ± 2.33 0.9129 ± 0.0270

ComplexNet 35.26 ± 2.3 0.9377 ± 0.0186 32.65 ± 2.30 0.9156 ± 0.0258

Note: Data are means ± standard deviations, and the bold values denote which model performed the best under
each image metric

ComplexNet complex-valued convolutional neural network, CS-MRI compressed sensing MRI, PSNR peak
signal-to-noise ratio, R acceleration rate, RealNet real-valued convolutional neural network, SSIM structural
similarity
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The comparison of the detection of CMBs between
the fully sampled and ComplexNet approaches is shown
in Supplementary Table 2. There is no significant differ-
ence in the presence or number of CMBs identified on
the fully sampled and ComplexNet reconstructed results

at both R = 5 and R = 8 (p > 0.05). The interobserver
agreement for the presence or number of CMBs follow-
ing MARS is also excellent in both the fully sampled
and ComplexNet reconstructed results (Supplementary
Table 3).

Fig. 3 Quantitative comparisons
of image quality scores between
the fully sampled and
ComplexNet approaches at R = 5
and R = 8. Image quality scores
were evaluated independently by
two blinded radiologists in terms
of overall image quality, SNR,
sharpness, and aliasing artifacts.
Bar plots show average scores
and their standard deviation
across the test data. * denotes
statistically different results with
p < 0.05. SNR, signal-to-noise
ratio

Fig. 4 Representative SWI images comparing the fully sampled and
ComplexNet approaches for visualization of pathology, with the T2-
weighted MR images (a1–a3) shown as reference. a1–d1 Images in a

61-year-old man with traumatic brain injury. a2–d2 Images in a 66-year-
old woman with cerebral hemorrhage. a3–d3 Images in a 38-year-old
woman with arteriovenous malformation after radiotherapy
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Discussion

In this study, we developed and clinically evaluated a
ComplexNet approach for fast and accurate reconstruction of
highly accelerated SWI data. Our results show that
ComplexNet can effectively remove undersampled artifacts
as well as restore both magnitude and phase images at accel-
eration rates of 5 and 8. In addition, ComplexNet significantly
outperforms the conventional methods in terms of PSNR and
SSIM (p < 0.001). Furthermore, ComplexNet can provide
comparable performance to the fully sampled SWI in terms
of overall image quality (p > 0.05) and detection of CMBs,
with reconstruction speeds of approximately 19 ms per slice,
which allows real-time reconstruction of highly accelerated
SWI data for practical clinical deployment.

Phase information is critical to many MRI applications,
including SWI, quantitative susceptibility mapping, fat-water
separation, and phase-contrast imaging [6, 14]. Thus, con-
structing a network that accurately reconstructs the phase im-
age is highly desirable. Previous studies have demonstrated
that complex-valued networks have richer representational

power and can more accurately reconstruct the phase image
compared to real-valued networks [6]. Therefore, a complex-
valued network with unrolled architecture is proposed to faith-
fully recover both the magnitude and phase images. Our re-
sults also show that ComplexNet consistently outperforms
RealNet with the same number of trainable parameters regard-
ing quantitative image metrics (Table 2), which is consistent
with previous studies [6, 13]. The unrolled network architec-
ture is used in this study because it has been widely used in
state-of-the-art MRI reconstruction and has the advantage of
incorporating known MR physics [5, 6]. However, the
complex-valued framework can be straightforwardly adapted
to other network architecture (e.g., U-Net) by replacing the
real-valued convolutional layers of existing networks with
the complex convolutional layers [6].

Although deep learning has shown great potential in MRI
reconstruction, one of the most important concerns of such
methods is whether they can faithfully reconstruct abnormal-
ities in clinical practice [27, 28]. Therefore, extensive test data
with a wide range of pathology are used to evaluate the per-
formance of ComplexNet. Our study shows that ComplexNet

Fig. 5 Representative SWI images show similar diagnostic image quality
between fully sampled and ComplexNet approaches, with T2-weighted
MR images (a1–a3) shown as reference. a1–d1 Images in a 49-year-old

woman with brain tumor. a2–d2 Images in a 69-year-old man with dif-
fuse large B cell lymphoma. a3–d3 images in a 49-year-old man with
high-grade glioma after biopsy
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can provide clear visualization of pathology (Figs. 4 and 5),
including hemorrhage, CMBs, and brain tumor, with a five- to
eightfold decrease in scan time compared to the fully sampled
SWI. The detection of hemorrhage, even a small number of
CMBs, is often clinically important in the emergency setting
[2]. Therefore, the decreased scan time with ComplexNet is
promising to facilitate widely adoption of SWI for time-
critical diseases, such as stroke, hemorrhage, and traumatic
brain injury [3, 29].

However, patient abnormalities can be quite heteroge-
neous, and some abnormalities are rare and unlikely to be
included in the training data set [28]. In addition, the
undersampled MRI reconstruction has intrinsic uncertainty
[30, 31]. Therefore, deep learning–based reconstruction
methods might remove critical features or create false features
that could result in a misdiagnosis [28]. In order to guarantee
faithful recovery, the reconstructionmodel should learn a low-
dimensional manifold where the reconstructed images have
not only superior sharpness and diagnostic quality, but also
consistent with both the real MRI data and the acquisition
model [32]. Furthermore, it is also important to quantify and
display the pixel-wise reconstruction uncertainty for clinical
applications in the future [30, 31]. This could allow radiolo-
gists to gain additional insight on the reconstruction quality
and potentially generate a better diagnosis outcome [30].

It should be noted that the fine details of some ComplexNet
reconstructed images looked slightly smoothed compared to
the fully sampled results, which can be further confirmed by
the quantitative comparison of sharpness score between the
two approaches (Fig. 3). This is most likely due to the use of
the mean-squared error loss in the training process, which
drives the deep learning model to search pixel-wise averages
of plausible solutions [9, 33]. In the future, it will be promising
to integrate better learning metrics, such as generative adver-
sarial network [34], perceptual loss [35], to ComplexNet to
improve perceptual quality and fine texture details of the re-
construction results.

Our study had several limitations. First, although the en-
hanced T2*-weighted angiography is a multi-echo GRE se-
quence, only the GRE data with echo time = 23.0 ms were
used to train and evaluate ComplexNet for SWI application.
Further evaluation of ComplexNet for R2* mapping and
quantitative susceptibility mapping using multi-echo data
would be a valuable extension of this study [14]. Second,
ComplexNet was only assessed on retrospectively
undersampled data and has not been validated on prospective
acquisition. In the future, additional evaluation on prospective
datasets with variable clinical settings and MRI machines will
be performed to further demonstrate the clinical potential of
ComplexNet.

In conclusion, the proposed ComplexNet is effective in
accelerating the acquisition of SWI data and providing high-
quality image reconstruction for visualizing a wide range of

pathology. Broader clinical application of ComplexNet may
result in more efficient diagnosis and treatment of time-critical
diseases.
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