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Abstract— This work proposes a new retrospective
motion correction method, termed DCGAN-MS, which
employs disentangled CycleGAN based on multi-mask
k-space subsampling (DCGAN-MS) to address the image
domain translation challenge. The multi-mask k-space
subsampling operator is utilized to decrease the complex-
ity of motion artifacts by randomly discarding motion-
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affected k-space lines. The network then disentangles the
subsampled, motion-corrupted images into content and
artifact features using specialized encoders, and generates
motion-corrected images by decoding the content features.
By utilizing multi-mask k-space subsampling, motion arti-
fact features become more sparse compared to the original
image domain, enhancing the efficiency of the DCGAN-MS
network. This method effectively corrects motion artifacts in
clinical gadoxetic acid-enhanced human liver MRI, human
brain MRI from fastMRI, and preclinical rodent brain MRI.
Quantitative improvements are demonstrated with SSIM
values increasing from 0.75 to 0.86 for human liver MRI with
simulated motion artifacts, and from 0.72 to 0.82 for rodent
brain MRI with simulated motion artifacts. Correspondingly,
PSNR values increased from 26.09 to 31.09 and from 25.10 to
31.77. The method’s performance was further validated
on clinical and preclinical motion-corrupted MRI using the
Kernel Inception Distance (KID) and Fréchet Inception Dis-
tance (FID) metrics. Additionally, ablation experiments were
conducted to confirm the effectiveness of the multi-mask
k-space subsampling approach.

Index Terms— Gadoxetic acid-enhanced human liver MRI,
motion artifact, unpaired learning, multi-mask k-space sub-
sampling, CycleGAN.

I. INTRODUCTION

MAGNETIC resonance imaging (MRI) is a widely used
imaging modality for both clinical [1] and preclin-

ical [2] applications due to its ability to visualize both
the anatomy and function of tissues and organs as well as
pathological processes [3], [4]. However, since its inception,
MRI has been hampered by motion artifacts due to subject
motion [5], [6]. An example is liver MRI with gadoxetic acid,
a hepatocyte-specific MR contrast agent [7], [8]. Previous stud-
ies [9], [10], [11] have reported a high incidence (5%-18%)
of severe image quality degradation due to acute transient
dyspnea or transient severe motion during gadoxetic acid-
enhanced MRI. In addition, in pediatric or stroke patients in
clinical [12] or rodents in preclinical studies [13], images are
always degraded due to subject motion between consecutive
acquisitions. Therefore, it is essential to develop an effective
motion artifact correction technique to improve the quality of
motion-corrupted images.

Although various prospective and retrospective strategies
have been proposed to remove motion artifacts [6], [14],
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[15], [16], non-rigid motion correction remains challenging,
especially for abdominal regions such as liver MRI [17].
Prospective techniques perform a real-time update of the image
acquisition by utilizing either optical tracking of target mark-
ers [18] or continuously reacquired images from dedicated
navigator scans [19]. However, these prospective solutions are
suboptimal in liver MRI as nonrigid motion is difficult to track.
On the other hand, the retrospective motion correction methods
modify the k-space or image data after the acquisition [20].
These methods can be classified into the primary information-
based methods that incorporate prior information and the
data-driven autofocusing methods that do not depend on any
device or navigator. The data-driven autofocusing motion
correction approaches are appealing, as they can be easily
applied to all scanners. Unfortunately, these approaches often
result in a poorly conditioned and non-convex optimization
problem.

With the rapid development of deep learning, many
researchers have demonstrated great potential for MRI motion
correction [21], especially for dramatically reducing compu-
tation time [22] or improving the data-driven autofocusing
motion correction convergence [23]. Many methods are based
on end-to-end supervised learning networks. The classical
networks are trained by pairs of motion-corrupted and motion-
free images by comparing the network’s prediction with the
ground truth motion-free images, using a voxel intensity-based
cost function, i.e., L1 or L2 loss. Within this framework,
Tamada et al. [24] proposed a deep learning-based net-
work based on multi-channel convolutional neural networks
(MARC) to remove the motion artifacts in DCE-MRI images
of the liver. A method [25] combining dense convolutional
neural networks and residual U-Net was proposed to detect and
correct motion artifacts in brain MRI. Yang et al. [26] proposed
a model-based synthetic data-driven learning (MOST-DL)
method that combines Bloch simulation and general MRI
models, which can significantly reduce ghosting and motion
artifacts in T2 images. Shi et al. [27] proposed an affin-
ity fusion-based framework for iteratively random motion
(AFFIRM), which uses affinity fusion to integrate features
between 2D slices and reconstructed 3D volumes to accurately
estimate motion in multi-slice fetal brain MRI.

In addition to the classical supervised networks, sev-
eral generative end-to-end adversarial network (GAN) [28]
based methods have also been proposed. These GAN-based
methods introduce a generator network that maps the motion-
corrupted image to a motion-free one, and a discriminator
network that aims to distinguish the predicted image from
a ground truth image. The GAN-based conjugate gradient
SENSE (CG-SENSE) reconstruction method [29] uses the
CG-SENSE algorithm to reconstruct images from multishot
motion-corrupted k-space data. These images are further pro-
cessed by GAN for motion artifact correction. Bao et al. [30]
proposed a motion correction method based on the condi-
tional generative adversarial network with minimum entropy
(cGANME), and demonstrated that the additional entropy
loss can improve the final MR image quality. Gao et al.
[31] proposed a hierarchical perception adversarial learning

framework (HP-ALF), which employs a hierarchical mech-
anism to provide structural information of MRI images for
adversarial learning from global and regional perspectives.

The supervised motion correction methods always require
paired data to train the network. The acquisition of paired
data is often impractical and time-consuming. A common
approach to generating the paired data is through simulations.
However, the simulations cannot accurately and sufficiently
reflect all possible forms of real-world artifacts. To cope
with the lack of paired motion-free and corrupted data, many
unsupervised generative models that aim to correct motion
artifacts with only unpaired data have been proposed. Cycle-
GAN [32] architecture consisting of two GANs is one of
the most important unsupervised networks. Two generators,
one corrupting a motion-free image and one correcting an
unpaired corrupted image, are trained to invert each other
(cycle transform). Typical CycleGAN-based motion correc-
tion methods are Cycle-MedGAN [33] and Cycle-MedGAN
V2.0 [34], which capitalize on the adversarial loss to cap-
ture high-frequency texture information, and the perceptual
loss to enhance the sharpness of the translated images.
Recently, Liu et al. [35] suggested a disentangled unsuper-
vised cycle-consistent adversarial network (DUNCAN), which
demonstrated that artifact-corrupted images can be disentan-
gled into an anatomical content component and an artifact
component. Pan et al. [36] proposed an unsupervised network
(DR-CycleGAN) that introduces a novel content consistency
loss to eliminate entanglement. In a different setting, Oh et al.
[37] attempted to correct motion-corrupted measurements by
combining repeated randomly subsampled reconstructions.
The motion artifacts were reduced in probability by random
subsampling to reject the k-space outliers, and then an opti-
mal transport-driven cycleGAN (OT-cycleGAN) was used to
reconstruct the subsampled images.

In this work, we introduce a new retrospective motion cor-
rection method, DCGAN-MS (Disentangled CycleGAN based
on multi-mask k-space subsampling), designed to address
motion artifacts in MRI. First, we apply multi-mask k-space
subsampling to reduce these artifacts, leveraging prior knowl-
edge that motion-induced artifacts predominantly arise from
outliers in the k-space phase-encoding direction. This multi-
mask subsampling approach will generate a domain with
fewer motion artifacts, facilitating the correction process while
preserving image content information. Second, we design a
network based on a disentangled CycleGAN architecture to
address the lack of paired ground truth data for training.
By reformulating motion correction as an image domain trans-
lation task, the network reconstructs motion-free images from
multi-mask subsampled, motion-corrupted inputs. We evaluate
the method’s performance using Kernel Inception Distance
(KID) [38] and Frèchet Inception Distance (FID) [39] metrics,
which measure the similarity between the distributions of
corrected and motion-free images. Experiments on both simu-
lated and in vivo preclinical/clinical MRI data demonstrate the
effectiveness of the proposed approach. Additionally, ablation
studies confirm the impact of the multi-mask subsampling
method on enhancing motion correction.
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Fig. 1. Overview of the proposed DCGAN-MS. First, multi-mask
k-space subsampling is applied to reduce motion artifacts and create a
subsampled motion domain. Then, forward translation corrects motion-
corrupted images into motion-free images, while backward translation
regenerates motion-corrupted images from motion-free ones.

II. METHODS

A. The Architecture of DCGAN-MS

The main idea of DCGAN-MS is illustrated in Fig. 1. Given
unpaired motion-corrupted images x (from the motion domain)
and motion-free images y (from the clean domain), our goal
is to translate these images into their corresponding coun-
terparts in the opposite domains. First, multi-mask k-space
subsampling is applied to reduce motion artifacts and obtain a
subsampled motion domain. Second, forward translation cor-
rects motion-corrupted images into motion-free images, while
backward translation regenerates motion-corrupted images
from motion-free ones. In the forward translation, the motion-
corrupted images x are encoded and disentangled into content
and artifact features, while the motion-free images y are
encoded into content features. The content features from the
motion-corrupted images x are then decoded to reconstruct
images in the clean domain. Conversely, the artifact features
of x are combined with the content features of the motion-
free images y to generate new motion-corrupted images in the
motion domain

The multi-mask k-space subsampling operator is a crucial
component in reducing the complexity of motion artifacts
in motion-corrupted images, allowing the network to more
effectively disentangle content and artifact features. By ran-
domly discarding motion-affected k-space lines, this operator
sparsifies the motion artifact features, making it easier for
the disentangled CycleGAN framework to isolate these arti-
facts. As a result, the network can focus more efficiently
on reconstructing the underlying content, even in cases with
severe motion artifacts. This sparsification process, as demon-
strated in the ablation studies (discussed further below), leads
to a significant improvement in the model’s performance.
Fig. 2 provides a detailed visualization of the proposed
DCGAN-MS architecture. The method is designed around
three core elements: multi-mask subsampling, cross-domain
translation, and within-domain translation. These elements
work synergistically to address the challenge of motion cor-
rection in MRI. Multi-mask k-space subsampling simplifies

artifact complexity; cross-domain translation enables the trans-
formation between motion-corrupted and motion-free image
domains; and within-domain translation ensures reconstruction
consistency.

1) Multi-Mask Subsampling: The transient motion of the
subject introduces phase errors in the k-space data along
the phase-encoding direction. In most cases, these motion-
corrupted k-space outliers can be assumed to be sparse, leading
to the following motion-corrupted k-space data: [40]:

kx (r, p) =

{
ky(r, p)e− j8(p), p ∈ K
ky(r, p)

(1)

where j =
√

−1, kx (r, p) and ky(r, p) refer to the motion-
corrupted and motion-free k-space data, respectively. r and p
indicate the read-out and phase-encoding directions, respec-
tively. φ(p) is the displacement (in radian) phase caused by
motion along the phase-encoding direction. The variable κ

denotes the phase-encoding indices where the motion occurs.
Therefore, by applying a k-space random subsampling oper-

ator to the motion-corrupted image x in the phase-encoding
direction, we can mitigate the impact of motion artifacts
by randomly discarding some motion-affected k-space lines.
However, subsampling will also introduce aliasing artifacts
while reducing motion-related artifacts. Therefore, the multi-
mask k-space subsampling will be utilized to reduce the effect
of aliasing. The particular process is as follows:

(1) Input the raw k-space or image data. If the input is image
data, the Fourier transform F needs to be applied for the input
motion-corrupted images x and the motion-free images y to
transform the image data into the k-space domain, resulting in
kx = F(x), ky = F(y).

(2) The k-space data kx and ky are subsampled using multi-
mask to obtain subsampled k-space data ks

x = T ⊙ kx , ks
y =

T ⊙ ky , where ⊙ represents element-by-element multiplica-
tion, and T is the multiple subsampling matrix composed of
0 and 1.

(3) The subsampled k-space data ks
x and ks

y are converted
back to image space data through an inverse Fourier trans-
form F−1 to obtain the multi-mask subsampled image xd

=

F−1(ks
x ), yd

= F−1(ks
y).

2) Cross-Domain Translation: Fig. 2(a) shows the archi-
tecture for cross-domain translation, which is designed to
obtain the reconstructed motion-corrected images. Firstly, the
subsampled motion-corrupted images xd are encoded and
disentangled to the content features Z x

c = Ec(xd) and artifact
features Z x

a = Ea(xd). The subsampled clean images yd are
encoded to the content features Z y

c = Ec(yd). Finally, the
artifact features Z x

a from the motion-corrupted images and the
content features Z y

c from the clean images are decoded to
generate the new motion-corrupted image ỹ = Gm(Z y

c , Z x
a ).

Similarly, the content features Z x
c from the corrupted images

are decoded to obtain the motion-corrected images x̃ =

Gc(Z x
c ).

One key advantage of DCGAN-MS is its ability to train the
network without requiring a paired dataset. This is achieved
by performing cross-domain translation twice, resulting in a
cycle transformation of the input, as shown in Fig. 2(a). This
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Fig. 2. The architecture of the proposed method (DCGAN-MS). The upper panel (a) illustrates the cross-domain translation process, which utilizes
disentangled CycleGAN based on multi-mask k-space subsampling to address motion correction. The lower panel (b) shows the within-domain
translation, implemented as a self-supervised constraint to enhance the training efficiency of the encoder and decoder. Key components include:
Ec (content feature encoder), Ea (artifact feature encoder), Gc (clean domain generator), Gm (motion domain generator acting as the decoder), Dc
(clean domain discriminator), and Dm (motion domain discriminator).

cycle transformation imposes a cycle consistency constraint,
ensuring that the learned mappings between domains remain
consistent. DCGAN-MS trains the generator and discriminator
adversarially. As illustrated in Fig. 2, the model includes two
encoders, Ec and Ea along with two generator-decoders, Gc
and Gm . The discriminator Dc is used to distinguish whether
the generated motion-corrected images x̃ = Gc(Z x

c ) belong
to the motion-clean domain. And the discriminators Dm dis-
tinguish whether the generated motion-corrupted images ỹ =

Gm(Z y
c , Z x

a ) belong to the motion domain. The generators aim
to produce realistic motion-corrected images to deceive the
discriminators, while the discriminators work to improve their
classification accuracy and avoid being fooled. The detailed
architectures of the encoders, generators, and discriminators
are presented in Fig. 3.

3) Within-Domain Translation: Fig. 2(b) shows the archi-
tecture for within-domain translation. The goal of the
within-domain translation is to train the encoder and decoder
more effectively by imposing a self-reconstruction loss. Sim-
ilar to the cross-domain translation, the motion-corrupted

images x and motion-free images y are multi-mask k-space
subsampled along the phase-encoding direction to obtain the
subsampled images xd and yd . Then, the motion-corrupted
images xd are also disentangled into the content features Z x

c
and artifact features Z x

a . The clean images yd are encoded
to the content features Z y

c . However, unlike cross-domain
translation, we do not swap the content features. Thus,
the reconstructed motion-corrupted xrec

= Gm(Z x
a , Z x

c ) and
motion-corrected yrec

= Gc(Z y
c ) should be identical to x and

y, respectively.

B. The Loss Function
The total loss function of our method contains four parts

(see Fig. 4): the adversarial loss Ladv , the cycle-consistency
loss Lcyc, the reconstruction-consistency loss Lrec, and the
content-consistency loss Lsum :

L total = λadv Ladv + λcyc Lcyc + λrec Lrec + λcon Lcon (2)

where λadv , λcyc, λrec and λcon are the balance factors to
ensure similar contributions among all these losses.
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Fig. 3. The detailed structure of the proposed model, including encoders Ec and Ea, generators Gc and Gm and the discriminator. (a) Two kinds
of encoders: the content feature encoder Ec and the artifact feature encoder Ea. (b) Two kinds of generators: the clean domain generator Gc
whose input is only content features, and the motion domain generator Gm whose input contains both content features and artifact features. (c) The
discriminators (Dc , Dm), which evaluate the quality and realism of the generated images.

Fig. 4. Description of loss functions in the proposed method.

1) Adversarial Loss: The adversarial loss Ladv is a critical
component of GAN-based networks, measuring the discrep-
ancy between the distribution of real motion-free data and
the distribution of generated motion-corrected data. This loss
encourages the generator to produce realistic images that can
deceive the discriminator, while pushing the discriminator to
correctly classify input images as real or fake. The adversarial
loss functions like a minimax game between the generator and
discriminator, where the generator aims to minimize the loss,
and the discriminator attempts to maximize it.

In the proposed method, there are two types of adversarial
losses: LC

adv , which encourages the generation of more realistic
motion-corrected images. L M

adv , which encourages the gener-
ation of more realistic motion-corrupted images.

Ladv = LC
adv + L M

adv (3)

LC
adv = E[∥Dc(y)∥2] + E[∥Dc(x̃) − 1∥2],

L M
adv = E[∥Dm(x)∥2] + E[∥Dm(ỹ) − 1∥2] (4)

x̃ = Gc
(
Ec(xd)

)
, ỹ = Gm

(
Ec(yd), Ea(xd)

)
(5)

where x̃ are the generated motion-corrected images, ỹ are the
generated motion-corrupted images, ∥·∥2 is the L2 norm, and
E denotes the expectation operator.

2) Cycle-Consistency Loss: The cycle-consistency loss Lcyc
is a crucial component of DCGAN-MS, ensuring that the
generated images retain the content of the original images after

cross-domain translation. This loss operates on the principle
that if an image is translated from the motion domain to
the clean domain, and then back to the motion domain, the
result should closely resemble the original image. Similarly,
if an image is translated from the clean domain to the motion
domain, and then back to the clean domain, the original image
should be recovered. The cycle-consistency loss measures the
difference between the original and reconstructed images using
the L1 norm and works to minimize this difference. This
constraint helps maintain the content integrity of the input
images throughout the translation process.

Lcyc = LC
cyc + L M

cyc (6)

LC
cyc = E[∥y − ycyc

∥1], L M
cyc = E[∥x − xcyc

∥1] (7)

xcyc
= Gm

(
Ec

(
8(x̃)

)
, Ea

(
8(ỹ)

))
,

ycyc
= Gc (Ec(8(ỹ))) (8)

where xcyc is the cycle reconstructed motion-corrupted
images, ycyc is the cycle reconstructed motion-corrected
images, and ∥·∥1 is the L1 norm.

3) Within-Domain Reconstruction-Consistency Loss: Lrec is
used to ensure that the encoder and decoder can preserve
the content of the input images after encoding and decoding,
which measures the pixel-wise discrepancy between the input
image and its reconstructed version in the within-domain
translation. This loss is based on the idea that if we encode an
image from the motion/clean domain and then decode it back
to the corresponding domain, we should obtain an image that is
identical or very similar to the original image. Reconstruction
loss can effectively avoid the problem of losing informa-
tion or introducing noise during the encoding and decoding
process.

Lrec = LC
rec + L M

rec (9)

LC
rec = E[∥y − yrec

∥1], L M
rec = E[∥x − xrec

∥1] (10)

xrec
= Gm

(
Ec(xd), Ea(xd)

)
, yrec

= Gc
(
Ec(yd)

)
(11)
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Fig. 5. The complete inference process of motion correction in
DCGAN-MS.

where xrec are the reconstructed motion-corrupted images, and
yrec are the reconstructed motion-corrected images.

4) Content Consistency Loss: Due to the lack of sufficient
supervised information for the translated images, relying only
on the constraints of the feature domain discriminator may
lead to “hallucinations” in the generated images. As we
know, motion artifacts always occur in the phase-encoding
direction and have a negligible effect on the calculation of
the sum of pixel values in each column along the phase-
encoding direction compared to the original content of the
images [36]. With content consistency loss Lcon constraints for
the final motion-corrected images, we can effectively reduce
hallucinations.

Lcon = LC
con + L M

con (12)

LC
con =

n∑
i

(∥∥∥∥ sumi (y)

maxi (y)
−

sumi (ỹ)

maxi (ỹ)

∥∥∥∥
1

)
,

L M
con =

n∑
i

(∥∥∥∥ sumi (x)

maxi (x)
−

sumi (x̃)

maxi (x̃)

∥∥∥∥
1

)
(13)

where n is the number of the column along the phase-encoding
direction, sumi is the summation of the pixel value in the ith
column, and maxi is the maximum value of the pixel value in
the ith column.

C. The Pipeline of Training and Inference

Training procedure (1) Subsampling of the input unpaired
images with different mask N times (N = 15 in this study).

(2) Disentangle the multi-mask subsampled images into
content and artifact features.

(3) With extracted content and artifact features, a cross-
domain operator is employed to obtain generated motion-free
or motion-corrupted images. Subsequently, the cross-domain
operator is executed once more to ascertain the cycle-
consistency loss. At the same time, a within-domain operator
is utilized to obtain within-domain reconstruction-consistency
loss.

(4) Train the network (DCGAN-MS) with hybrid loss.
Inference procedure (1) Subsampling of the input motion-

corrupted images x with different mask N times (N = 15 in
this study) to obtain xd (see Fig. 5).

(2) Disentangle the subsampled motion-corrupted images
xd to the content features Z x

c = Ec(xd) with the trained
network Ec.

(3) The content features Z x
c are decoded using the trained

network Gc, and the final motion-corrected image xcor is
obtained through average aggregation processing.

Fig. 6. Five-point Likert scale based on artifact significance. Grade 1: No
artifacts; Grade 2: Mild artifacts; Grade 3: Moderate artifacts; Grade 4:
Severe artifacts; Grade 5: Non-diagnostic.

III. EXPERIMENTS

A. Dataset
1) Clinical Gadoxetic Acid-Enhanced Human Liver MRI: The

clinical dataset comprised gadoxetic acid-enhanced MRI scans
of the liver collected from Union Hospital, Huazhong Uni-
versity of Science and Technology, after privacy-preserving
preprocessing. The study was approved by the institutional
review board (IRB No. 2019-09-021), and written informed
consent was waived. All MR image data (in DICOM file
format) were exported from the institutional Vue PACS sys-
tem and underwent deidentification preprocessing. A total
of 176 examinations were acquired on a commercial 1.5T
MR scanner (MAGNETOM Avanto, Siemens Healthineers,
Germany), and 132 examinations were acquired on a 3T
MR scanner (MAGNETOM Skyra, Siemens Healthineers,
Germany). The study followed standard scanning protocols,
images were acquired using the 3Dimensional Volumet-
ric Interpolated Breath-hold Examination (3D-VIBE) pulse
sequence [42] with the following scan parameters: FOV
380 mm × 380 mm, acquisition matrix size 320 × 320,
TE = 1.29 ms, TR = 4.5 ms, and slice thickness = 3 mm.
Two radiologists assessed the grades of motion artifacts. For
subjective evaluation, they rated the motion artifacts of arterial
phase MR images before and after motion correction using
a five-point Likert scale based on the significance of the
artifacts [9], [10] (refer to Fig. 6). Of the 308 examinations
containing artifacts, we utilized 50 with grade 2 to 5 motion
artifacts and 58 without artifacts as a training dataset. The
remaining 258 examinations with artifacts were used as a
testset.

2) Preclinical Brain Rodent MRI: We also evaluated our
algorithm in the preclinical study for rodent brain MRI. The
preclinical MRI experiments were performed on a Bruker
Biospec 7.0 T/20 cm MRI scanner. A 72-mm-diameter volume
coil was used for radio-frequency (RF) transmission and a
quadrature surface coil for signal detection. The body tem-
perature was kept at 37 ◦C with water circulation. Images
were acquired using the Rapid Acquisition with Relaxation
Enhancement (RARE) pulse sequence and the following scan
parameters: FOV 28 mm × 28 mm, acquisition matrix size
256 × 256, ETL = 8, TE = 20 ms, TR = 2500 ms, slice
thickness = 0.6 mm, number of slices = 30. A total of 20 rats
were scanned. To obtain realistic motion-affected images,
we conducted in vivo experiments with rodents by gradually
reducing the isoflurane concentration to zero. We maintained
the respiratory rate around 120 bpm for acquiring the motion-
affected imaging data.

3) Motion Simulation for Quantitative Analysis: To evaluate
the performance of motion correction methods in terms of
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TABLE I
QUANTITATIVE EVALUATION OF MOTION CORRECTION RESULTS USING VARIOUS METHODS FOR CLINICAL, PRECLINICAL, AND PUBLIC DATASETS

WITH SIMULATED MOTION ARTIFACTS. (BEST PERFORMANCE IS INDICATED IN BOLD BLACK)

SSIM and PSNR, we simulated motion artifacts on both
preclinical and clinical datasets. For the clinical human liver
MRI, 58 motion-free subjects were selected as the ground
truth. Artifact simulation was performed by introducing phase
errors to the k-space data, following the methods in [24]
and [40]. For the preclinical rodent brain MRI, motion
simulation accounted for both inter-shot motion (within the
repetition time) and intra-shot motion (within the echo train),
as described in [30]. Additionally, human brain T2-weighted
MRI from the FastMRI public dataset [43] was utilized to
further validate the generalizability of the proposed method.
The fastMRI dataset scanning parameters are: field of view
(FOV) ranging from 220 mm × 220 mm to 240 mm ×

240 mm, acquisition matrix size of 320 × 320, echo time (TE)
of 95-112 ms, and repetition time (TR) of 3112-8400 ms.

B. Implementation of Methods
The experiments were conducted using a system equipped

with an NVIDIA Geforce RTX 3090 with 24GB of GPU
memory and an Intel Xeon Gold 6230 CPU at 2.10 GHz.
For the training process, we implemented our network on the
PyTorch platform and utilized Adam [44] for optimization.
The learning rate was initially set to 0.0001 with exponential
decay over 10K iterations. To save memory and speed up
training, we randomly cropped the original images to obtain
128 × 128 pixel images prior to training.

For comparison, we also implemented three state-of-the-art
deep learning-based methods: one supervised method (MARC)
[24] and three unsupervised methods (DUNCAN [35], Boot-
strap [40] and UDDN [41]). MARC is an end-to-end
supervised deep learning approach for motion correction.
We trained the MARC network with the simulated data and
tested it with both the simulated and real in vivo data.

Evaluating the quality of the model can be challenging when
motion correction attempts to generate high-dimensional data
(motion-corrected data) with complex structures, especially for
real in vivo images. The Kernel Inception Distance (KID) [38]
and Frèchet Inception Distance (FID) [39] are common metrics
used to compare the feature distributions of the generated
and real images to assess how well the generative model
preserves the diversity and quality of the original domain.
In this study, we used the Kernel Inception Distance (KID)
and Frèchet Inception Distance (FID) in conjunction with
commonly used evaluation metrics such as the Peak Signal
to Noise Ratio (PSNR) and the Structural Similarity Index
(SSIM) to assess the quality of the generated motion-corrected

images. The KID and FID scores decrease as the distribution
of the generated images approaches that of the real motion-
free images. We used t-distributed stochastic neighborhood
embedding (t-SNE) [45] to reduce the dimensionality of
the feature vectors and assess the dissimilarity between the
distribution of the generated motion-corrected data and the
real motion-free data. The source code and example data are
available on https://github.com/baoqingjia/DCGAN-MS.

IV. EXPERIMENTAL RESULTS

A. Clinical MRI Data

1) Simulated Motion Artifacts: Fig. 7 provides both a quanti-
tative and qualitative comparison of motion correction results
for simulated motion artifacts in gadoxetic acid-enhanced
MRI. Each image includes a zoomed-in region to highlight
details, with the corresponding PSNR and SSIM values shown
in the upper left corner. The MARC method [24] shows a
reduction in motion artifacts; however, it often introduces
noticeable blurring, leading to a loss of fine image details.
Both the DUNCAN [35] and Bootstrap [40] methods manage
to avoid significant blurring, but their overall effectiveness
in correcting motion artifacts remains limited. In contrast,
our proposed method successfully eliminates motion artifacts
while preserving the finer structural details of the image.
This is especially evident in the zoomed regions, where our
method’s results appear much closer to the ground truth com-
pared to other methods. To further validate the generalizability
of our method, we compared the motion correction results of
various methods applied to human brain MRI from fastMRI,
utilizing simulated motion artifacts for evaluation. As illus-
trated in Fig. 8, each image is accompanied by a difference
map that highlights the discrepancies between the corrected
images and the ground truth. These difference maps provide
a visual representation of the effectiveness of each method in
reducing motion artifacts and preserving the integrity of the
original images. By analyzing these results, we can assess how
well our approach performs compared to other state-of-the-
art methods, reinforcing its robustness and versatility across
different datasets and imaging conditions.

In addition to visual improvements, our method significantly
boosts quantitative performance. As shown in Table I, both
PSNR and SSIM values are markedly enhanced after applying
our motion correction technique, indicating more accurate
and clearer reconstructions. To further validate these findings,
Fig. 9 presents SSIM histograms comparing different methods.
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Fig. 7. Quantitative and qualitative comparison of motion correction results using various methods for human liver MRI with simulated motion
artifacts. The top-to-bottom rows show motion correction for varying degrees of motion artifacts. Our method is compared with four state-of-the-art
techniques: MARC [24], DUNCAN [35], Bootstrap [40] and UDDN [41]. The PSNR and SSIM values for each image are displayed in the corners.

Fig. 8. Quantitative and qualitative comparison of motion correction results using various methods for human brain MRI from fastMRI with simulated
motion artifacts.

The SSIM values for the motion-corrupted images primarily
fall between 0.5 and 0.9, highlighting the degradation caused
by motion. However, after applying our method, most images

achieve SSIM values above 0.8, significantly outperforming
other state-of-the-art techniques. This demonstrates not only
the robustness of our approach in addressing motion artifacts
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Fig. 9. SSIM histograms of motion correction results using various
methods for human liver MRI with simulated motion artifacts.

TABLE II
RADIOGRAPHIC ASSESSMENT OF MOTION CORRECTION RESULTS

USING VARIOUS METHODS FOR CLINICAL GADOXETIC

ACID-ENHANCED HUMAN LIVER MRI

but also its ability to maintain and even enhance image quality
across a wide range of conditions.

2) Real Motion Artifacts: Fig. 10 presents the motion correc-
tion results for clinical gadoxetic acid-enhanced MRI images
that exhibit real in vivo motion artifacts. Our proposed method
demonstrates superior performance compared to other tech-
niques in motion correction, effectively avoiding blurring and
preserving fine details in the images. This preservation of
detail is crucial for accurate diagnosis and interpretation,
especially in complex abdominal imaging scenarios.

To gain a more comprehensive understanding of the clinical
relevance of these results, we invited two experienced radi-
ologists to conduct a thorough radiologic assessment of the
corrected images. The two physicians, one with 25 years of
experience (Lian Yang) and the other with 13 years (Feng Pan)
in abdominal radiology, independently evaluated the images
for the presence of artifacts and blurring. The findings from
their evaluations are summarized in Table II, which details
their assessments regarding the effectiveness of the different
methods. Image quality was evaluated using a standardized
5-point visual scoring system, where: 1 = excellent image
quality with no visible artifacts; 2 = mild artifacts but
satisfactory diagnostic confidence; 3 = moderate artifacts
with limited diagnostic confidence; 4 = poor image quality
with severe artifacts; and 5 = non-diagnostic image quality
due to pronounced artifacts. Additionally, image blurring was
assessed using a 4-point scoring system: 1 = no blurring; 2 =

mild blurring; 3 = moderate blurring; and 4 = severe blurring.
To ensure the reliability of the evaluations, the consistency of
the radiologists’ scores was further analyzed using Cohen’s
kappa measure.

Our results demonstrate the efficacy of the proposed method
in mitigating motion artifacts, achieving a significantly lower

TABLE III
RADIOGRAPHIC ASSESSMENT OF MOTION CORRECTION RESULTS

USING VARIOUS METHODS FOR HUMAN LIVER MRI
WITH SIMULATED MOTION ARTIFACTS

mean motion artifact score of 1.8 ± 0.6 (indicating mild arti-
facts with satisfactory diagnostic confidence) compared to 2.9
± 1.3 for motion-corrupted images (indicating moderate arti-
facts with limited diagnostic confidence). Notably, the model
does not introduce additional image blurring. Furthermore,
radiographic assessments of simulated motion correction (see
Table III) validate the improved visual quality of the images.
Expert evaluations confirm that our approach significantly
enhances diagnostic confidence and accuracy. This validation
by experienced radiologists highlights the clinical applicability
of our method, underscoring its potential to improve diagnostic
outcomes and patient care in real-world scenarios.

B. Preclinical MRI Data
We also applied the method to the preclinical simulated

and in vivo data. Fig. 11 shows the comparison for simulated
motion-corrupted rodent brain MRI images. The motion arti-
fact correction performance of our method is better than the
other methods in terms of PSNR and SSIM (see Table I).
Fig. 12 shows the motion-correction results for preclinical
rodent brain MRI with real motion artifact using various meth-
ods. These results illustrate that our method can significantly
reduce motion artifacts and outperform the other methods.

C. The KID and FID Results
As mentioned above, the evaluation of the performance of

the motion correction method for in vivo data is not trivial.
In this study, we further analyzed the Kernel Inception Dis-
tance (KID) and Frèchet Inception Distance (FID) for different
methods. As shown in Table IV, our method has significantly
lower KID and FID scores than the other methods. This
indicates that the image distribution of corrected images using
our method is closer to the distribution of images without
motion artifacts.

We also use t-distributed stochastic neighbor embedding (t-
SNE) plots to visually analyze the performance of different
motion correction methods for the clinical gadoxetic acid-
enhanced human liver MRI with real motion artifact. The
corrected and clean images are processed by the pre-trained
Inception v3 network [46] to obtain high-level image features
(1 × 2048), and Principal Component Analysis (PCA) [47]
and t-SNE further reduce the feature dimension to 1 × 2.
By plotting the dimensionality reduction features (1 × 2) of the
two images, we can compare the distributions of the corrected
and clean images (see Fig. 13). The MARC-corrected images
have a distribution that is significantly different from that
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Fig. 10. Motion correction results of clinical gadoxetic acid-enhanced human liver MRI using various methods.

TABLE IV
COMPARISON OF KID AND FID SCORES FOR DIFFERENT MOTION

CORRECTION METHODS APPLIED TO BOTH CLINICAL AND

PRECLINICAL MRI DATA

of the clean images, with a noticeable distance between
them. The DUNCAN-corrected images have a distribution that
exhibits a clear boundary from that of the clean images. The
images corrected by Bootstrap and our method are intertwined
with the distribution of the clean images and do not show clear
boundaries. However, the images corrected by our method are
more tightly intertwined, indicating that they are closer to the
clean images.

V. DISCUSSION

This work presents a motion correction method that utilizes
a disentangled CycleGAN framework based on multi-mask
subsampled motion-corrupted images. The efficacy of this
method was evaluated using quantitative metrics SSIM and
PSNR on three datasets with simulated motion artifacts:

human liver MRI, human brain MRI from fastMRI, and rodent
brain MRI. Furthermore, the efficacy of this method was val-
idated on clinical gadoxetic acid-enhanced human liver MRI
and preclinical rodent brain MRI, with real motion artifacts.
For the preclinical dataset, the analysis was conducted using
raw k-space data, while for clinical studies, we relied on
magnitude image data. This distinction arises from the fact
that raw k-space data is rarely archived in clinical settings
due to storage constraints. Notably, our proposed method
effectively addresses motion artifacts in both raw k-space data
and reconstructed magnitude images. It is well established that
parallel imaging and compressed sensing are widely adopted
techniques in clinical MRI, and applying our method to real
raw k-space data in conjunction with these techniques presents
an exciting opportunity for future research. We hypothesize
that integrating our method with parallel imaging and com-
pressed sensing will yield even better image quality. Firstly,
accelerated and parallel imaging techniques can significantly
reduce acquisition times, thereby minimizing the likelihood
of motion events occurring during scanning. Secondly, our
retrospective motion correction method is designed to manage
residual motion artifacts that may still be present in the
images. This combination could enhance the overall efficacy of
motion correction, leading to improved diagnostic capabilities
in clinical practice.

In contrast to supervised motion correction methods,
unsupervised approaches do not require large amounts of
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Fig. 11. Quantitative and qualitative comparison of motion correction results using various methods for rodent brain MRI with simulated motion
artifacts.

Fig. 12. Motion correction results of preclinical rodent brain MRI using
various methods.

paired data for training, making them more adaptable in
real-world scenarios where such data is often scarce. Addi-
tionally, unsupervised networks [48], [49] are generally more
robust to distribution shifts and better equipped to han-
dle out-of-distribution samples compared to their supervised
counterparts. While methods like MARC can achieve higher
quantitative metrics such as PSNR and SSIM by minimizing
the L1 loss between clean and motion-corrupted images, they
tend to underperform on real in vivo images with complex
motion artifacts. For instance, as shown in Fig. 7, the super-
vised MARC method [24] often generates blurry images.
Generative AI-based methods are better suited for preserving

fine structural details in images than end-to-end deep learning
motion correction techniques. Motivated by these advantages,
we developed a novel motion correction method leveraging
CycleGAN, one of the most advanced frameworks in genera-
tive AI. To further enhance image quality, we also introduced
a multi-scale discriminator, which evaluates the differences
between motion-free and motion-corrected images at various
scales. This multi-scale approach ensures that finer details are
preserved while reducing motion artifacts, ultimately leading
to sharper, more realistic images across a range of scales.

The occurrence of hallucinations remains a persistent chal-
lenge in generative AI-based motion correction for MRI.
Hallucinations occur when the generative model introduces
unrealistic or spurious structures into the image, which can
mislead clinical interpretation. To tackle this issue, some
researchers have incorporated physics-based motion models
into the MRI reconstruction process [17], [50], [51], [52]. For
example, Hossbach et al. [17] proposed a novel approach to
rigid-body motion correction that combines traditional model-
driven techniques with deep learning algorithms. Similarly,
Levac et al. [53] developed a diffusion model-based method
for accelerated MRI motion correction, which jointly estimates
both the motion-free image and rigid motion parameters from
subsampled, motion-corrupted 2D k-space data. However,
these methods are mostly tailored to rigid motion, where the
physical model is relatively simple compared to the complex-
ities involved in non-rigid motion, such as that seen in liver
MRI. The goal of our study is to develop a motion correction
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Fig. 13. t-SNE plots between motion correction results of vari-
ous methods and clinical gadoxetic acid-enhanced human liver MRI.
(a) DUNCAN [35], (b) Bootstrap [40], (c) UDDN [41], and (d) Ours
method.

method that is effective in handling non-rigid motion, par-
ticularly for clinical gadoxetic acid-enhanced human liver
MRI. To achieve this, we have devised a generative AI-based
motion correction framework utilizing image-to-image transla-
tion. A key focus of this approach is minimizing hallucinations
by leveraging three carefully crafted loss functions.

The first of these is the cycle-consistency loss Lcyc, which
ensures that the content of the input image is maintained
after it undergoes cross-domain translation between motion-
corrupted and motion-free domains. This prevents the network
from losing crucial anatomical information during the gen-
erative process. The second loss function, within-domain
reconstruction consistency loss Lrec, ensures that the network
can faithfully reconstruct the original content of the input
image after encoding and decoding within the same domain.
This is critical for preserving image fidelity throughout the
correction process. The third loss function, content consistency
loss Lcon , is designed specifically to address the challenge of
hallucinations. Since motion artifacts typically manifest in the
phase-encoding direction of MRI, they have little impact on
the overall sum of pixel values in each column along that
direction. By incorporating this knowledge, Lcon provides a
form of supervised information that guides the network to
retain the original content of the image while removing motion
artifacts. This not only helps mitigate hallucinations but also
ensures that the corrected images remain faithful to the true
underlying anatomical structures. However, we acknowledge
that the proposed method is not entirely free from hallucination
artifacts. To assess this, two experienced radiologists analyzed
a total of 300 real in vivo motion-corrupted images (motion
grades 4-5). Among these, hallucinations were observed in
4 images when using the proposed method, compared to
16 images when content consistency loss was not employed.
This indicates that while our approach reduces the occurrence
of hallucinations, there is still room for further improvement.

We also compared our method to two state-of-the-art
unsupervised deep-learning-based methods, namely, DUN-
CAN [35] and Bootstrap [40]. DUNCAN is conceptually

Fig. 14. Histograms of motion artifact magnitude for 1,000 clinical
gadoxetic acid-enhanced human liver MRI, measured by the L2 norm
of the disentangled artifact module Ea. From left to right: single-mask
subsampling, multi-mask subsampling, and without subsampling.

similar to the CycleGAN architecture, which consists of
two generators, to overcome the need for paired datasets.
Moreover, DUNCAN also disentangles images by separating
image content features from motion artifact features. Although
DUNCAN significantly improves upon MARC and CycleGAN
in terms of motion correction, its performance can degrade
when dealing with highly complex or severe motion artifacts,
as it primarily focuses on generating fully sampled motion-free
images from fully sampled motion-corrupted images.

The Bootstrap method approaches motion correction from
a probabilistic subsampling perspective. It trains only one
generator to remove subsampling artifacts rather than directly
addressing motion artifacts. The method does not learn to dif-
ferentiate between motion-free and motion-corrupted images
but instead generates motion-free images by “cheating” the
discriminator—replacing randomly dropped k-space lines with
denoised or reconstructed lines based on the assumption
that these missing lines should resemble uncorrupted data.
However, when the subsampled motion-corrupted images
significantly differ from their motion-free counterparts, the
Bootstrap method may struggle to produce satisfactory results.

In contrast, the primary focus of our method is motion
correction through disentangled CycleGAN architecture, aug-
mented with multi-mask subsampling of motion-corrupted
k-space data. The subsampling operator randomly discards
motion-affected k-space lines, mitigating the impact of motion
artifacts [54], [55], [56] and aiding in the disentanglement
of image content from motion artifact features. This oper-
ator helps to sparsify motion artifact features, improving
the efficiency of the CycleGAN model, particularly when
motion artifacts are severe. However, if the subsampling mask
primarily retains most of the motion-corrupted k-space data,
the motion correction results may not be optimal. While
subsampling can introduce aliasing artifacts, our multi-mask
subsampling strategy helps minimize aliasing effects, much
like the Bootstrap method. However, our method diverges
from Bootstrap in both reconstruction and correction. Unlike
Bootstrap, which only uses motion-free images for training,
our method leverages both motion-free and motion-corrupted
datasets. This enables our model to better handle complex and
severe motion artifacts, resulting in more accurate and effective
motion correction, especially in challenging cases.

In the following section, we evaluate the role of multi-
mask k-space subsampling from two critical perspectives:
simplifying the motion artifacts and preserving the consistency
of image content information.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 25,2025 at 08:51:19 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: MRI MOTION CORRECTION THROUGH DISENTANGLED CycleGAN 1919

Fig. 15. t-SNE plots for visualizing three scenarios: (a) motion-corrupted
versus motion-free images, (b) single-mask subsampling of motion-
corrupted and motion-free images, and (c) multi-mask subsampling of
motion-corrupted and motion-free images.

Fig. 16. The histogram and Blad-Altman plots of within-domain
reconstruction-consistency loss between the motion-free images y and
the reconstructed images yrec. The up row shows the comparison of
the histogram. From left to right: single-mask subsampling, multi-mask
subsampling, and without subsampling. The second row shows the Blad-
Altman plots.

A. Subsampling to Simplify the Motion Artifacts
We quantify the motion artifacts by computing the L2

norm of the disentangled artifact modules Ea . Fig. 14
shows the histograms of artifact amplitudes for 1000 clin-
ical gadoxetic acid-enhanced MRI images (including with
single-mask subsampling, multi-mask subsampling, and with-
out subsampling. Without subsampling, artifact amplitudes
are distributed around 1.4-3.3. After subsampling, the artifact
feature amplitudes are reduced to 0.4-1.8. The results suggest
that subsampling can significantly reduce the motion artifact
complexity, which may facilitate the network disentanglement
artifact features. Moreover, we can observe that the artifacts
with multi-mask subsampling are very similar to the single-
mask subsampling.

Similarly, we used t-SNE to visualize the following
three scenarios: motion-corrupted and motion-free images,
motion-corrupted and motion-free images with single-mask
subsampling, and motion-corrupted and motion-free images
with multi-mask subsampling. As shown in the Fig. 15,
the distributions of motion-corrupted and motion-free images
become increasingly similar after subsampling. This suggests
that subsampling effectively reduces the complexity of motion
artifacts, helping to align the feature distribution of motion-
corrupted images with that of motion-free images.

TABLE V
QUANTITATIVE EVALUATION OF MOTION CORRECTION RESULTS USING

DIFFERENT SUBSAMPLING MASK NUMBERS N FOR HUMAN LIVER MRI
WITH SIMULATED MOTION ARTIFACTS

TABLE VI
QUANTITATIVE EVALUATION OF MOTION CORRECTION RESULTS USING

DIFFERENT ACCELERATION FACTORS R FOR HUMAN LIVER

MRI WITH SIMULATED MOTION ARTIFACTS

B. Multi-Mask Subsampling That Preserves the
Consistency of Image Content Information

The proposed method with subsampling aims to reduce
artifacts effectively without losing the content information.
To evaluate the impact of the subsampling operator on
the content information, we calculate the within-domain
reconstruction-consistency loss Lrec between the reconstructed
images yrec and the input motion-free images y (see details
in the loss function), and compare the loss with or with-
out subsampling. The histograms and Bland-Altman plot in
Fig. 16 indicate that the reconstruction-consistency loss tends
to increase after applying single-mask subsampling (with
an average reconstruction loss increase of 0.28) compared
to the case without subsampling. This observation implies
that the subsampling operator leads to content informa-
tion loss in motion-corrupted images. To address this issue,
a concept similar to bootstrap is introduced, involving the
use of multi-mask k-space subsampling to recover content
information. The reconstruction-consistency loss histograms
exhibit remarkable similarity between multi-mask subsam-
pling and without subsampling conditions, with an average
reconstruction-consistency loss difference of only 0.02.

We experimented with the effect of different numbers
of subsampled masks (denoted as N ) on the motion cor-
rection results. Table V shows that both PSNR and SSIM
improve as N increases. The performance stabilizes when N
reaches 15. Therefore, we choose N = 15 as a compromise
between performance improvement and computational over-
head. Throughout these ablation experiments, we keep the
acceleration factor R fixed at 3 to streamline the adjustment
of the hyperparameter N . Similarly, to validate the impact of
different subsampling rates, we also examine different accel-
eration factors, denoted as R. Fig. 17 illustrates an example
of correction results with different motion artifacts and differ-
ent acceleration factors R. Table VI provides a quantitative
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Fig. 17. Quantitative and qualitative comparison of motion correction using different acceleration factors R for human liver MRI with simulated
motion artifacts. From left to right: motion corrupted, without subsampling (R = 1), with subsampling factor R = 2, R = 3, R = 4, and the ground
truth (GT).

comparison across different acceleration factors. Based on
these results, motion artifacts are most effectively removed
when an acceleration factor R = 3 is used. Throughout these
ablation experiments, we kept the number of sub-sampled
masks at N = 15 to facilitate the adjustment of the accel-
eration factor hyperparameter.

VI. CONCLUSION

We propose a retrospective motion correction method that
used disentangled CycleGAN based on multi-mask k-space
subsampling (DCGAN-MS). The main idea is to convert
motion correction to the image domain transfer problem,
which can be solved by disentangled CycleGAN. Moreover,
the mutli-mask subsampling strategy is introduced to reduce
features of the motion artifacts and simplify the domain
transfer problem. The network can disentangle the motion-
corrupted images into the content and artifact features by
corresponding trained encoders and obtain the corresponding
motion-free images by applying the decoder with the content
domain. DCGAN-MS can correct the motion artifact for clin-
ical gadoxetic acid-enhanced human liver MRI and preclinical
rodent brain MRI without paired datasets. It also outperforms
other unsupervised methods in quantitative metrics, including
SSIM and PSNR for datasets with simulated motion artifacts,
and KID, FID for the real in vivo datasets.
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