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Purpose: To design an unsupervised deep neural model for correcting suscepti-
bility artifacts in single-shot Echo Planar Imaging (EPI) and evaluate the model
for preclinical and clinical applications.
Methods: This work proposes an unsupervised cycle-consistent model based
on the restricted subspace field map to take advantage of both the deep learn-
ing (DL) and the reverse polarity-gradient (RPG) method for single-shot EPI.
The proposed model consists of three main components: (1) DLRPG neural net-
work (DLRPG-net) to obtain field maps based on a pair of images acquired
with reversed phase encoding; (2) spin physical model–based modules to obtain
the corrected undistorted images based on the learned field map; and (3)
cycle-consistency loss between the input images and back-calculated images
from each cycle is explored for network training. In addition, the field maps
generated by DLRPG-net belong to a restricted subspace, which is a span of
predefined cubic splines to ensure the smoothness of the field maps and avoid
blurring in the corrected images. This new method is trained and validated on
both preclinical and clinical datasets for diffusion MRI.
Results: The proposed network could effectively generate smooth field maps
and correct susceptibility artifacts in single-shot EPI. Simulated and in vivo
preclinical/clinical experiments demonstrated that our method outperforms
the state-of-the-art susceptibility artifact correction methods. Furthermore, the
ablation experiments of the cycle-consistent network and the restricted subspace
in generating field maps did show the advantages of DLRPG-net.
Conclusion: The proposed method (DLRPG-net) can effectively correct suscep-
tibility artifacts for preclinical and clinical single-shot EPI sequences.
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1 INTRODUCTION

MRI is one of the most widely used imaging modalities
for preclinical and clinical applications. Due to its abil-
ity to deliver high-definition images in short acquisition
time (on the order of 100 ms per slice), single-shot EPI
(ssEPI) has become one of the most useful sequences uti-
lized in Magnetic Resonance Imaging (MRI).1 SsEPI also
provides the benefit of avoiding motion artifacts associ-
ated with multiple-shot techniques. These factors con-
tribute to its widespread application in Diffusion Tensor
Imaging (DTI),2 functional Magnetic Resonance Imag-
ing (fMRI),3 and dynamic susceptibility contrast MRI
(DSC-MRI).4 However, the bandwidth of ssEPI along the
phase-encoding direction is relatively low, making it sensi-
tive to B0 field inhomogeneities and leading to pronounced
susceptibility artifacts at the boundaries of tissues with
differing susceptibilities.5 The severity of susceptibility
artifacts increases with magnetic high field strength.

A variety of ssEPI susceptibility artifact correction
methods have been developed, and the most widely used
are field mapping6–8 and gradient reversal methods.9 The
field mapping method corrects distorted images by coor-
dinate calculation and linear interpolation based on a
separately acquired B0 field map,8 calculated from two
gradient-echo (GRE) images acquired using different TE.
Whereas it takes only a few seconds for ssEPI to collect
images, it can require tens of seconds to a few minutes for
GRE-based field map acquisition.10 Despite its relatively
easy implementation, it also has some disadvantages. First,
the accuracy of the generated field map is low, which
affects the performance of artifact correction, resulting in
residual artifacts in the corrected image. Secondly, in the
calculation process of field mapping, the existence of var-
ious errors will affect the phase unwrapping, making this
process more challenging near the tissue boundaries and
in the areas with high field inhomogeneity.11 The gradient
reversal methods, instead of using an explicit B0 field map,
infer the distortions using a pair of two EPI scans acquired
with the phase-encoding gradients played out with oppo-
site polarities, resulting in two images with equal magni-
tudes of distortion but of opposite directions. Chang and
Fitzpatrick’s12 method corrects artifacts by estimating the
displacement of each k-space line in the phase- encod-
ing direction and then using 1D unwrapping to obtain a
displacement map. However, due to the limited smooth-
ness of the displacement map, streaking or discontinuities
might occur in the corrected image. Andersson et al. pro-
posed a method to fit the displacement field with discrete
cosine basis functions, named TOPUP, which improved
the smoothness of the field map13 and formed part of FSL
software package (FMRIB Software Library).14 However,
the disadvantage of these traditional methods is that for
images with large matrix size, pixel-level iterative solution

is time-consuming, and the optimization of nonconvex
objective function will face the problem of falling into a
local minimum.

Due to its powerful feature extraction ability, deep
learning–based methods for correction of susceptibility
artifacts in ultrafast MRI images have been implemented
by a growing number of researchers, relying on deep learn-
ing as a potential way to significantly reduce the computa-
tional time and solve the nonconvex optimization problem
of field map estimation. The deep learning methods
are mainly divided into supervised15,16 and unsupervised
methods.17,18 The supervised methods need the datasets
with ground truth to train the model. Liao et al.15 corrected
distortions present in gradient-echo ssEPI by using convo-
lutional neural network based on the simulated distorted
images generated by their homebuilt MRI simulation soft-
ware. Hu et al.16 used point-spread-function–encoded EPI
images as ground-truth images to generate displacement
maps to correct distortions in ssEPI during U-net training.
However, due to the errors introduced by phase unwrap-
ping and regularization, the effect of the generated dis-
placement map was not satisfactory. Soan17 proposed an
end-to-end deep learning network by exploring the use of
deep convolutional network to estimate the displacement
map from a pair of input images. Benjamin18 trained a
deep convolutional U-net architecture that was previously
used to estimate optical flow (Flownet19) between mov-
ing images and to learn distortion map from an input pair
of distorted ssEPI images. In our previous work, we pro-
posed a cycle-consistent deep neural network that takes
advantage of both the deep neural network and the gradi-
ent reversal method for removing susceptibility artifacts in
single-shot EPI.20

This paper proposes an unsupervised deep learning
network that uses a reverse polarity-gradient (RPG) to cor-
rect susceptibility artifacts in the reversed phase-encoding
ssEPI, named DLRPG-net. Firstly, the deep neural net-
work combined with the restricted subspace technique
is applied to generate the displacement map. Specifically,
DLRPG-net will try to predict the coefficients of prede-
fined cubic spline vectors,21,22 and the displacement maps
are calculated based on these coefficients. Then, the for-
ward and backward physical model containing both geo-
metric and intensity correction modules is employed to
obtain the cycle-consistent loss for the network train-
ing. This approach does not require explicit knowledge
of the ground truth displacement map. The simula-
tion experiments show that our method outperforms the
state-of-the-art traditional and deep learning methods in
qualitative and quantitative terms. Experiments on both
clinical and preclinical applications demonstrate the gen-
eralization capabilities of our method. Furthermore, the
ablation experiments show the advantage of the combina-
tion of the restricted subspace technique and deep learning
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(A)

(C)

(B)

F I G U R E 1 (A) The pulse sequence and k-space acquisition trajectory of reversed phase-encoding ssEPI. (B) The cycle-consistency
idea of this method. Firstly, the field map is obtained by DLRPG-net based on the pairs of images acquired by the reversed phase-encoding
ssEPI. Then, the corrected images can be obtained by the physical backward model (geometric and intensity correction) with the generated
field map. Finally, the forward model is applied to obtain the distorted cycle back blip-UP/DOWN images to explore the consistent cycle loss.
(C) Detailed procedure of the proposed learning framework for the ssEPI susceptibility artifacts correction. The total loss for training the
network is shown at the bottom.

in generating field maps, and the cycle-consistent loss for
correcting susceptibility artifacts.

2 METHODS

2.1 The overall architecture

The overall architecture of the proposed method is shown
in Figure 1. Figure 1(A) shows the pulse sequence of

reversed phase-encoding ssEPI. In Figure 1(B), we illus-
trate the main idea of this method: Firstly, the field map is
obtained by the DLRPG-net based on the images acquired
with the reversed phase-encoding ssEPI. Then, the cor-
rected images can be obtained by the physical backward
model (geometric and intensity correction) using the gen-
erated field map. Finally, the forward model is applied to
obtain the distorted cycle back blip-UP/DOWN images to
calculate the cycle-consistency loss. Figure 1C shows the
details of the respective procedures.
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(A)

(B) (C)

F I G U R E 2 (A) The overall architecture of DLRPG-net. (B) The back projection module multiplies the pregenerated bases and the
coefficients map generated by the network to obtain the components of the final field map. (C) The residue leaky ReLU is introduced as the
activation function to ensure that the output can be positive or negative. ReLU, rectified linear units.

2.2 DLRPG-net for field map estimation

At the heart of the susceptibility artifact correction lies the
accurate estimation of the B0 field map. However, estimat-
ing field maps is not a straightforward problem because
the least-squares cost function with respect to field maps
is always nonconvex.22 Neighborhood information is often
incorporated into the reconstruction to avoid erroneous
field map estimates. Motivated by the work of Tsao and
Jiang,22 we propose a new network (DLRPG-net) that takes
both advantages of deep learning and restricts the field

map to a subspace. The overall architecture of DLRPG-net
is shown in Figure 2. The main idea of the DLRPG-net is to
generate the coefficients for the field map in the restricted
subspace; namely, these coefficients are expected to be
close to the inner product of the field map and the prede-
fined cubic spline vectors.

The architecture of DLRPG-net is similar to the
most common network (U-Net23). It has a symmet-
ric encoder-decoder architecture, including skip connec-
tions, shown in Figure 2. The layers in the encoder part
are skip-connected and concatenated with layers in the

 15222594, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.29653 by Innovation A

cadem
y For Precision M

easurem
ent Science A

nd T
echnology, C

as, W
iley O

nline L
ibrary on [29/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



462 BAO et al.

decoder part. The skip connections promote U-Net to use
fine-grained details learned in the encoder part to con-
struct an image in the decoder part. The encoder part
consists of multiple residual blocks and results in a fea-
ture map with halved resolution as the input for the next
encoder. The residual blocks24 were used to replace the
traditional U-Net feature extraction block. Details of the
encoder are shown in the upper left part of Figure 2(A): it
contains two 2D convolutional layers, two rectified linear
units (ReLU), and a skip connection. The decoder block
contains 2D convolutional layers, two batch normalization
layers, and an upsampling layer, as shown in Figure 2(A).
More details of the DLRPG-net can be found in the Text S1
in Appendix S1. As was mentioned above, with the num-
ber of decoding layers increasing, the dimension of the
coefficient matrix also increases. The residual leaky ReLU
is utilized to convert the feature map to the coefficients,
shown in Figure 2C. The leaky ReLU is introduced as
the activation function to ensure that the output can be
positive or negative. Then, the back projection module is
applied to map the deep-learned coefficients to the field
map in the image space by multiplying the predefined
basis, shown in Figure 2B.

2.3 Geometric and intensity correction
based on DLRPG-net learned field map

In general, the susceptibility artifacts induced by field
inhomogeneities in ssEPI are negligible along the
slice-selection and frequency-encoding direction as a
result of the much higher acquisition or excitation band-
width. Thus, susceptibility artifacts along phase encoding
(PE) in ssEPI can be considered as consisting of two
parts: geometric deformations and intensity variations.
It is intuitive for the geometric deformation induced by
the B0 inhomogeneities to manifest as a pixel shift along
the PE direction. For a pixel in position (x, y), the shift
distance along the PE in terms of the number of pixels
can be formulated as u(x, y) = 𝛿y∕Δy = ΔB0(x, y)tespNy,
where 𝛿y is the distortion caused by B0 inhomogeneity,
and Δy indicates the resolution of one pixel. More details
on the theoretical background of susceptibility artifacts
can be found in Text S2 in Appendix S1. The undistorted
spatial images Iundis(x, y) can be obtained based on u(x, y)
mapping of the distorted domain to undistorted domain,
Iundis(x, y)∼Idis(x, y + u). Because the distance of pixel
shifts are not necessarily integer multiples of the image
resolution, the interpolation of the distorted images is
usually needed.25

After the geometric deformation correction, the inten-
sity correction should not be neglected. Theoretically,
the mean intensity of any subspace should be inversely

proportional to its area.26 Pixel-wise Jacobian modulation
has usually been adopted to correct intensity variation
in which the contracted areas will experience increased
intensity and the dilated areas will experience decreased
intensity. More details regarding intensity corrections
using Jacobian modulation used in this paper can be found
in the Text S3 in Appendix S1. In this work, the optimized
Jacobian modulation method is used based on the recent
work,27 and the corrected images can be obtained by the
following Equation:

Iundis(x, y) =
2Idis up(x, y + u(x, y)) ∗ Idis down(x, y − u(x, y))
Idis up(x, y + u(x, y)) + Idis down(x, y − u(x, y))

.

(1)
If the field map derived by deep learning is exact, the

intensities in the image after correction by Jacobian mod-
ulation Jfield and “true” image pixel intensities will be
the same. However, it is difficult to obtain an accurate
Jacobian matrix. Because the intensity accumulation and
corresponding intensity dispersion in the image pair can
compensate for each other to a certain degree, the inten-
sity correction by Equation (1) has certain tolerance to
field map error propagation and can obtain better images
compared to traditional Jacobian modulation.

After obtaining the corrected images, we need to derive
the cycle back-calculated images based on the forward
model to get the cycle-consistency loss for unsupervised
training of the network. In Figure 1C, we can see that
the network will try to optimize the cycle-consistency loss
between the cycle images (Icycle up(u) and Icycle down(u)) and
uncorrected images (Idis up and Idis down):

Lmsecycle =
[
Icycle up(u) − Idis up

]2

+
[
Icycle down(u) − Idis down

]2
. (2)

2.4 The loss function

To optimize the performance of susceptibility artifact
correction, a hybrid loss function that considers several
knowledge priors is proposed. The first term of the hybrid
loss is the cycle-consistency losses between the cycle
back-calculated blip-UP/DOWN images and original UP/-
DOWN images. It also consists of the field map loss that
enforces similarity between the two field maps, and the
structural similarity between the T2/T1 weighted image
and the corrected EPI images. The hybrid loss function can
be defined as:

Lall = Lmsecycle + 𝜆1Lmsemap + 𝜆2Lmsecor + 𝜆3Lnmicor,

(3)
Where Lmsecycle is the cycle consistency loss

representing the difference between the original and
the cycle back-calculated images. Lmsemap denotes the
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loss of the difference between two field maps. 20 Lmsecor
denotes the loss for the two corrected UP/DOWN images.
And Lnmicor means the normalized mutual informa-
tion (NMI)28,29 for the structural similarity between the
susceptibility artifact-corrected image and the reference
image, which is defined as:

Lnmicor = 1 −NMI (Iundis, Iref) , (4)

Where Iundis and Iref are the corrected image and the ref-
erence image, respectively. The expression of normalized
mutual information is as follows:

NMI (Iundis, Iref)

=

∑
iundis

pIundis (iundis) log pIundis (iundis)
+
∑

iref
pIref (iref) log pIref (iref)

∑
iundis,iref

pIundis,Iref (iundis, iref) log pXY (iundis, iref)
, (5)

Where pI(i) represents the probability distribution of I,
which means the probability that variable I has value i,
pIundis,Iref (iundis, iref) is the joint probability distribution of
Iundis and Iref. NMI values range from 0 (no mutual infor-
mation) to 1 (completely relevant). In addition, 𝜆1, 𝜆2, 𝜆3
are the weighting factors in formula (2) that are empiri-
cally set as 𝜆1 = 1, 𝜆2 = 1, and 𝜆3 = 0.2 after performing an
array of optimization. Figure S1 in Appendix S1 depicts the
convergence curves of DLRPG-net training under different
loss components.

2.5 Datasets

All animal experiments were conducted following the USA
National Institutes of Health (Bethesda, Maryland, USA)
animal care guidelines, and the procedures were approved
by the Animal Ethics Committee of Innovation Academy
for Precision Measurement Science and Technology, Chi-
nese Academy of Sciences (APM22022A). The preclinical
MRI data were acquired on a Bruker Biospec 7.0 T/20 cm
MRI scanner using a homemade modified EPI sequence
with an inverse encoding gradient in the coronal view of
the rat brain (source code is available at https://github.
com/baoqingjia/EPI_correction). A 72-mm-diameter vol-
ume coil was used for Radio Frequency (RF) transmission
and a quadrature surface coil for signal detection. The
rats were anesthetized with isoflurane mixed with oxygen
(4.0%–5.0% for induction, 0.5%–1.0% for maintenance).
The respiratory rate (30∼ 50) was continuously monitored
during the scan under the anesthesia state scan. The body
temperature was maintained with 37◦C water circulation.
The sequence parameters are as follows: Field of View
(FOV) = 28× 28 mm2, acquisition matrix size= 80× 80,
TE= 30 ms, TR= 4000 ms, slice thick= 1 mm, number

of slices for each rat ranged from 20 to 30, num-
ber of averages= 1. Thirteen diffusion-weighted scans
were distributed equally over 1 shell defined with
b-values of 1000s/mm2, diffusion gradient time 𝛿 = 3.5 ms,
and gradient separation time Δ= 12 ms. In addition,
each rat also has corresponding T2w images acquired
with rapid acquisition with relaxation enhancement
(RARE) pulse sequence: FOV= 28× 28 mm2, acquisition
matrix size= 256× 256, TE= 20 ms, TR= 2500 ms, slice
thick= 1 mm, and reference images’ region and position
are the same as for the EPI sequence.

All clinical data were acquired using multi-shell
multi-band EPI sequences with an inverse encoding gra-
dient, downloaded from the Human Connectome Project
(HCP) website (Washington University, University of Min-
nesota, and Oxford University).30,31 All the images were
acquired on the HCP standard 3 T Siemens MRI scan-
ner with 32 channel head coil.32 Parameters selected for
DWI-EPI were: FOV = 208× 180 mm2; acquisition matrix
size= 104× 90; TE= 89.5 ms; TR= 5520 ms; nominal
voxel size of 1.25 mm isotropic; and 270 diffusion-weighted
scans distributed equally over 3 shells defined with
b-values of 1000, 2000, and 3000 s/mm2. Each scan was
repeated along two reversed phase-encoding directions
(Left to Right: L/R and Right to Left: R/L). For the
T1w images, FOV= 224× 224 mm2, acquisition matrix
size= 320× 320, TE= 2.14 ms, TR= 2400 ms, and nominal
voxel size of 0.7 mm isotropic.

2.6 Implementation

The DLRPG-net was implemented on Pytorch for the
Python 3.6 environment on an NVIDIA (Santa Clara, Cal-
ifornia, USA) Geforce GTX 2080Ti with 11GB GPU mem-
ory and Intel (Santa Clara, California, USA) Core CPU
i7-8700 3.7 GHz. The network was trained by the hybrid
loss function according to section 2.4 and Adam opti-
mizer33 with 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜀 = 10−8. Each dataset
was trained for 300 epochs. The initial learning rate was
set to 0.001, and it decreased by a factor of 0.95 after five
epochs.

Two deep learning methods (Soan17 and Benjamin18)
and the well-known traditional method (TOPUP13,14) are
used for the comparison with DLRPG-net. In terms of the
model parameters, the Benjamin model has 2.87 million,
DLRPG-net has 3.02 million, and Soan has 2.16 million
parameters. All deep learning methods (Soan, Benjamin,
and DLRPG-net) running on the PyTorch platform have
a correction time of less than 1.8 seconds per subject with
GPU. With CPU, the correction times are 2.8, 9.6, and
15.2 s, which are still less than the correction time of the
traditional method TOPUP (598 s).
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We also performed the Bloch equation–based
simulations to quantitatively compare the susceptibility
correction results. Simulations were performed based on
our preclinical dataset acquired with the Fast Spin Echo
(FSE) pulse sequence on a 7.0 T scanner. Moreover, the B0
inhomogeneity maps were obtained from the field map
protocol based on 3D-GRE with two different TEs. In the
simulation, Bloch equations were used to consider the
precession of spins only as an effect of RF pulses, gra-
dients, and B0 inhomogeneity effects, ignoring T1 and
T2 relaxation. To obtain a more accurate description of
the impact of B0 inhomogeneities, each image voxel con-
tained 16 spins, which were summed together after Bloch
simulation to obtain the final result. The simulation was
performed based on our home-built MatLab 2016a (Math-
Works, Natick, MA) code, which can be downloaded from
the github. The distorted ssEPI images (UP/DOWN) were
simulated with different phase-encoding gradient polari-
ties, and the reference images were simulated with zero B0
inhomogeneity, in which UP/DOWN images are identical.
The quality of the outputs of the network was evaluated by
two quantitative metrics: peak Signal Noise Rate (PSNR)
and structural similarity index (SSIM).34 The details of the
simulations are described in the Text S4 in Appendix S1.

For all three deep learning–based methods (Soan, Ben-
jamin, and DLRPG-net), we train the network with both
the simulated preclinical dataset and HCP dataset. For the
preclinical study, we utilize 800 slices of simulated data to
train the network and test the network with both simu-
lated and real scan datasets acquired on Bruker 7 T. The
500 slices of simulated data are used to evaluate PSNR/S-
SIM quantitative metrics. Moreover, a total of 2275 slices
(8 mice) of real scan datasets acquired on Bruker 7 T were
tested. For susceptibility distortion correction of the clini-
cal dataset, 500/200/1000 slices are used for training, val-
idating, and testing. It is worth mentioning that we only
take B0 images (without diffusion weighting) for training,
and both B0 and diffusion-weighted images are used for
testing. Moreover, we also investigate the distribution of
the Mean Square Error (MSE) error between correct UP
and Down images.

3 RESULTS

3.1 Validation for simulated EPI data
acquired with reversed gradients

Figure 3 shows the corrected images for simulated EPI
data acquired with the reversed gradients and the cor-
responding quantitative comparison. The columns from
left to right show reference images, distorted UP/DOWN
images, images corrected by TOPUP, Soan, Benjamin,

and DLRPG-net methods. The last column shows the
corresponding field maps used for the simulation. Here,
we also show the correction results for different B0
inhomogeneities, one from −150 to 150 Hz and the other
from −200 to 200 Hz. As the simulated datasets are used
in this test, the B0 inhomogeneity ranges can be deliber-
ately scaled to two different ranges. Figure 3 illustrates that
DLRPG-net can obtain better-corrected images. This can
be particularly well perceived by the zoomed regions (the
second and fifth row) and by the error maps (the difference
between the reference images and the corrected images).
This can be appreciated even better from the zoomed
regions and the absolute error map. And the last line sum-
marizes the quantitative comparison between the results
obtained by TOPUP, Soan, Benjamin, and DLRPG-net
methods. Regarding quantitative metrics, PSNR/SSIM for
DLRPG-net is 33.6/0.92, which is higher than 28.3/0.82
for TOPUP, 29.8/0.82 for Soan, and 30.1/0.85 for Benjamin
methods.

Figure 4 and Figure S2 in Appendix S1 show the
comparison of different deep learning–based susceptibil-
ity artifact correction methods with traditional TOPUP for
simulated data set comprising 500 slices. Every point in
Figure 4 represents SSIM for one slice based on TOPUP
and deep learning–based method. The first row shows the
scatterplot comparison. The points above the red line indi-
cate the results of deep learning–based methods, which
are better than TOPUP results. The second row shows
the Bland–Altman analysis comparison. We can notice
that the Bland–Altman analysis (average mean differ-
ence, average+ 1.96 SD, average −1.96 SD) in SSIM of
DLRPG-net (16.3, 38.8,−6.1) in % also shows the improve-
ment compared to that of Soan (6.1, 26.8, −14.6) and Ben-
jamin (9.2, 33.1, −14.7) methods. The statical distribution
of correction results is shown in Figure S2 in Appendix S1.

3.2 The correction results for clinical
data

Figure 5 presents the comparison between correction
results for B0 images of DWI-3 T data with the edges
extracted from the corresponding T2 images using
boundary-based registration.35 The images from left to
right correspond to distorted blip-UP/DOWN images,
images corrected by TOPUP, Soan, Benjamin, and
DLRPG-net methods. The second and fifth rows show
the absolute error maps between cycle back-calculated
blip-UP and original UP images. The third and sixth rows
show the absolute error maps between corrected UP and
DOWN images. Figure 5 illustrates that the DLRPG-net
can obtain better-corrected images with respect to the
other assessed methods. This advantage is especially
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(A)

(B)

F I G U R E 3 Comparison of different susceptibility artifact correction methods for simulated EPI-7 T mice data set and the quantitative
results of PSNR, SSIM, correction time, and number of parameters. Columns from left to right correspond to reference images (no B0

inhomogeneity), distorted blip-UP/DOWN images, and corrected images based on TOPUP, Soan, and Benjamin methods, as well as the
herein proposed method (DLRPG-net) along the field map used for simulation.

pronounced at the edges and in the region of the
cerebrospinal fluid (CSF). Images corrected with
DLRPG-net show the smallest error maps in both cycle
back-calculated error maps and error maps calculated
between corrected UP and DOWN images.

Because the ground truth image cannot be collected in
clinical experiments, the PSNR and SSIM indexes are no
longer applicable, so we choose the MSE between the cor-
rected UP and Down images as the evaluating indicator.
Figure 6 and Figure S4 in Appendix S1 show the compar-
ison of different deep learning–based susceptibility arti-
fact correction methods with traditional TOPUP for HCP
data set of 1000 slices. Every point shows MSE between
the corrected UP and Down images for one slice based

on TOPUP and deep learning–based methods. The first
row shows the scatterplot comparison. The points below
the red line indicate the results of deep learning–based
methods are better than TOPUP results. The second row
shows the Bland–Altman analysis comparison. We can
notice that the Bland–Altman analysis (average mean dif-
ference, average +1.96 SD, average −1.96 SD) in MSE of
DLRPG-net (−0.19, −0.35, −0.02) in % also shows the
improvement compared to that of Soan (−0.13, −0.36,
−0.1) and Benjamin (−0.15, −0.37, 0.07) methods. The
statical distribution of correction results is shown in
Figure S4 in Appendix S1.

We also evaluated the corresponding fractional
anisotropy (FA) map and diffusion-encoded-color (DEC)
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(A) (B) (C)

(D) (E) (F)

F I G U R E 4 Comparison of different deep learning–based susceptibility artifact correction methods with traditional TOPUP for
simulated data set comprising 500 slices. Every point represents SSIM for one slice based on TOPUP and deep learning–based methods. The
first row shows the scatterplot comparison. The points above the red line indicate the results of deep learning–based methods, which are
better than TOPUP results. The second row shows the Bland–Altman analysis comparison. (A, D) present the comparison of Soan and
TOPUP methods. (B, E) present the comparison of Benjamin and TOPUP methods. (C, F) present the comparison of DLRPG-net and TOPUP
methods. The Bland–Altman analysis (average mean difference, average +1.96 SD, average −1.96 SD) in SSIM of DLRPG-net (16.3, 38.8,
−6.1) in % shows the improvement compared to that of Soan (6.1, 26.8, −14.6) and Benjamin (9.2, 33.1, −14.7) methods.

map based on the images obtained after susceptibility
artifact correction. Figure S3 in Appendix S1 shows the
comparison of different susceptibility artifact correction
methods for two slices of the FA and DEC maps. One can
notice that the deep learning method can obtain better B0
images, FA, and DEC maps compared to other evaluated
methods.

3.3 The correction results
for preclinical data

We also applied different susceptibility artifact correction
methods to correct artifacts on the experimental preclin-
ical DWI-7 T dataset. Figure 7A shows a comparison of
the results after applying corrections using different meth-
ods, including TOPUP, Soan, Benjamin, and DLRPG-net,
which shows that DLRPG-net can obtain better-corrected
images compared to the rest of the assessed methods.
Figure 7B presents the comparison between the results
after applying corrections for FA maps and DEC maps
arising from images after applying different correction
methods. As can be appreciated from Figure 7, the
deep learning method can obtain better b0-corrected
images, diffusion-weighted images, FA map, and DEC map
compared to other evaluated methods.

4 DISCUSSION

This work has introduced a new method for distortion
correction in EPI images that arise from magnetic field
inhomogeneities. Quantitative metrics on all examined
data sets demonstrate, along with qualitative image assess-
ment, that our proposed method outperforms the widely
employed TOPUP method and some of the recently intro-
duced deep learning-based methods. At the same time, the
method introduced herein is orders of magnitude faster
than TOPUP method while using the same input, namely,
so-called UP and DOWN images.

Particular effort has been dedicated to addressing one
of the main challenges when deriving field maps: overcom-
ing discontinuities introduced through the fitting process.
In TOPUP, this has been addressed by fitting a field map
to a set of discrete cosine functions. In line with this
idea, we chose spline functions as our basis set. We can
notice in Figure 2 that the coefficients of field maps in the
different resolution subspaces correspond to different fea-
ture layers in the network. For example, the feature maps
in DLRPG-net’s bottom layer correspond to the coefficients
in the restricted low-resolution subspace. In contrast, the
feature maps of the upper layers correspond to the coeffi-
cients representing the higher-resolution subspace of the
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BAO et al. 467

F I G U R E 5 The susceptibility artifact correction results were compared for B0 images of DWI-3 T data. The edges extracted from the
corresponding T1 reference images are overlaid over the corrected images. The second and fifth rows show the corresponding absolute error
maps between cycle back blip-UP and original UP. The third and sixth rows show the corresponding absolute error maps between corrected
UP and corrected DOWN
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(A) (B) (C)

(D) (E) (F)

F I G U R E 6 Comparison of different deep learning–based susceptibility artifact correction methods with traditional TOPUP for HCP
data set of 1000 slices. Every point shows MSE between the corrected UP and Down images for one slice based on TOPUP and deep
learning–based methods. The first row shows the scatterplot comparison. The points below the red line indicate the results of deep
learning–based methods are better than TOPUP results. The second row shows the Bland–Altman analysis comparison. (A, D) present the
comparison of Soan and TOPUP methods. (B, E) present the comparison of Benjamin and TOPUP methods. (C, F) present the comparison of
the DLRPG-net and TOPUP methods. The Bland–Altman analysis (average mean difference, average +1.96 SD, average −1.96 SD) in MSE of
DLRPG-net (−0.19, −0.35, −0.02) in % shows a big improvement compared to that of Soan (−0.13, −0.36, −0.1) and Benjamin (−0.15, −0.37,
0.07) methods. HCP, Human Connectome Project.

field map. Firstly, this helps to avoid discontinuities in
the derived field maps; and secondly, this reduces the
space in which the field map is expected to lie by con-
straining it to a subspace spanned by the basis functions.
Whereas some of the methods try to enforce smoothness
on the field map by penalizing total variation of the field
map, using a set of smooth basis functions ensures this by
definition. Impact of the usage of spline subspace on simu-
lated EPI-7 T mice data set and HCP DWI-3 T data dataset
is illustrated in Figure S5 in Appendix S1, where SSIM is
significantly reduced when directly using extracted feature
maps without projecting them to the spline basis set, that
is, by ablating the back projection module. This is particu-
larly well exemplified by preclinical images, where a spline
basis set helps to reduce the dimensionality of the solu-
tion space and improves the convergence, particularly well
perceivable in the vicinity of structures with sharp inten-
sity changes, where model without spline basis does not
converge to one solution.

After the deep learning network training is com-
pleted, it is essential to test the generalization capabil-
ity of the network. In this work, we train the network

with only b= 0 images and successfully correct dis-
tortion in diffusion-weighted images. We also tried to
train the network with diffusion-weighted data acquired
with diffusion-weighting gradients applied in one orienta-
tion and corrected diffusion-weighted data acquired with
diffusion-encoding gradients applied in another direction
successfully. Moreover, we trained one network on pre-
clinical data and tested it on clinical data and another
network on clinical data and tested it on preclinical data.
For the network trained only with clinical data, it can also
provide satisfactory correction results for some preclinical
datasets; however, some preclinical data (∼20%) was not
corrected to an acceptable level, especially for images dis-
playing large B0-associated inhomogeneity distortions. It is
worth mentioning that the main advantage of this distor-
tion correction method is that it is based on unsupervised
training, without reference data (label), which is often
challenging to obtain. We calculate the cost function using
the physical forward problem of distortion correction dur-
ing conventional training without a need for reference
data. With this physical forward model, we try to correct
the images directly from a single dataset (“no pretraining
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(A)

(B)

F I G U R E 7 (A) Comparison of the correction results of preclinical rats data set obtained by the different methods, including TOPUP,
Soan, Benjamin, and DLRPG-net. The second and fourth row shows the absolute error between the cycle UP and UP images and a reference
T2w image. (B) Comparison between the results after applying corrections for FA (the second row) maps and DEC (the third row) maps
arising from images by the different methods, including TOPUP, Soan, Benjamin, and DLRPG-net. The fourth row shows the zoomed region
of the DEC maps.
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470 BAO et al.

F I G U R E 8 Comparison of our proposed method with and without the cycle consistency loss for our laboratory DWI-7 T and HCP DWI
data. On the far right are the reference and the corresponding quantitative comparison (SSIM) for a slice of HCP DWI data

network”). Although the generalization will not consti-
tute a challenge for this “no pretraining network,” it will
take much longer time to correct the images (∼30 s for one
image). Therefore, in this work two networks were trained
for the preclinical and human data, respectively.

The ablation experiments were also performed to eval-
uate the advantage of the cycle- consistency loss and
the NMI loss terms. Firstly, the improvements of the
cycle-consistency loss term are shown in Figure 8 both
for the simulated EPI data and real in vivo DWI-3 T data.
In Figure S6 in Appendix S1, results from the ablation
experiment are shown with and without NMI loss. As can
be seen, the CSF region and the edge region were better
corrected when using NMI loss. Moreover, we demon-
strated that our proposed model can perform shift correc-
tion with high fidelity and the more challenging task of
intensity correction. We assign this asset to the adoption
of an optimized method to calculate intensity correction
as described by Equation 1. This approach tries to alleviate
the limited accuracy of the derived field maps. The benefits
of Equation 1 are emphasized in Figure 9, comparing it to
the classical Jacobian correction method.

We also explored the appropriate size of training data
sets. To this end, we conducted an experiment varying the
number of slices used for training from 200 to 1400 in
steps of 100 slices. After reaching the slices number of 800,

the PSNR/SSIM indices reach a plateau, and the increase
in the training data set does not result in obvious per-
formance gain, although it is accompanied by increased
memory usage. Therefore, for the current study, we con-
cluded that 800 is the most appropriate dataset size.

One advantage of the TOPUP method is the fast acqui-
sition of input image pairs from which the field map
will be derived. This allows for minimizing the impact of
motion, which is much more of a concern for alternative
distortion correction methods based on time-consuming
field mapping. Nonetheless, to define cost function as
physically realistic as possible, we accounted for potential
impact of motion or field drift and derived two field maps
allowing differences in field maps corresponding to “UP”
and “DOWN” images, respectively, but applying a slight
penalty on these differences to force maximal similarity
between them when no or a negligible amount of motion
is present. The benefits of this approach in the presence of
motion based on simulations are illustrated in Figure S7 in
Appendix S1.

The simulated and in vivo preclinical/clinical exper-
iments show the advantages of the susceptibility artifact
correction method introduced in this work. However, this
method is designed for the single pairs of UP/Down images
without taking advantage of the whole diffusion-weighted
dataset. Eddy-current-induced distortions caused by the
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F I G U R E 9 Comparison of
different density compensation
methods are shown in the first row:
(A) corrected image without
density compensation; in (B, C) are
shown corrected images obtained
with Jfield and JRPG density
compensation methods,
respectively. In addition, in (D) Fast
Spin Echo (FSE) image is presented
for reference. The second row
presents a quantitative comparison
(SSIM and PSNR metrics) between
no weight, Jfield weight, and JRPG

weight density compensation
methods

(A) (B) (C) (D)

rapid switching of diffusion gradients are ignored; these
distortions may cause misalignment between different
DWI volumes, thereby affecting the quality of the FA and
DEC MAP. However, the existing eddy-current-distortion
correction based on affine transformations is not enough.
Our next direction is to further correct the eddy current
distortion between different volumes of DWI based on the
susceptibility artifact correction.

5 CONCLUSION

This paper presents a cycle-consistent deep neural net-
work that combines the deep neural network and the
gradient reversal method for correcting susceptibility arti-
facts. The model can be applied with unsupervised training
without explicit knowledge of the ground truth field map.
Results using clinical and preclinical datasets demonstrate
that our method outperforms state-of-the-art methods,
and the speed is an order of magnitude faster than the
traditional iterative TOPUP method.
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