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Abstract
Purpose: To design an unsupervised deep learning (DL) model for correcting
Nyquist ghosts of single-shot spatiotemporal encoding (SPEN) and evaluate the
model for real MRI applications.
Methods: The proposed method consists of three main components: (1) an
unsupervised network that combines Residual Encoder and Restricted Sub-
space Mapping (RERSM-net) and is trained to generate a phase-difference map
based on the even and odd SPEN images; (2) a spin physical forward model
to obtain the corrected image with the learned phase difference map; and (3)
cycle-consistency loss that is explored for training the RERSM-net.
Results: The proposed RERSM-net could effectively generate smooth phase dif-
ference maps and correct Nyquist ghosts of single-shot SPEN. Both simulation
and real in vivo MRI experiments demonstrated that our method outperforms
the state-of-the-art SPEN Nyquist ghost correction method. Furthermore, the
ablation experiments of generating phase-difference maps show the advantages
of the proposed unsupervised model.
Conclusion: The proposed method can effectively correct Nyquist ghosts for
the single-shot SPEN sequence.
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1 INTRODUCTION

Single-shot MRI can shorten the scanning time of
multiscan MRI from several minutes to tens of millisec-
onds and has played an important role in functional MRI,1
DTI,2 dynamic contrast-enhanced perfusion imaging,3
and cardiac imaging.4 EPI5 is one of the most commonly
used single-shot imaging methods; however, the inherent
low phase-encoding (PE) bandwidth (< 200 Hz clini-
cal, < 2000 Hz preclinical) of EPI often leads to serious
artifacts.6,7 Single-shot spatiotemporal encoding (SPEN)
introduces a linear swept-frequency chirp pulse in the PE
dimension, which can effectively improve the bandwidth
of the PE dimension and overcome susceptibility arti-
facts.8,9 Another advantage of the SPEN sequence is that it
can directly obtain low-resolution images by performing
Fourier transform (FT) along the readout (RO) direc-
tion. Thus, in SPEN aliasing, artifacts are absent when
its signals are undersampled along the low-bandwidth
dimension. This advantage is explored in many stud-
ies for interleaved high-resolution diffusion MRI with
referenceless scans.10,11

Like EPI, SPEN uses an alternate polarity gradient
to reduce the acquisition time. Due to hardware imper-
fections12 and eddy currents,13 phase shift always occurs
between the k-space lines collected using the opposite
gradient polarity, resulting in Nyquist ghosts in EPI
images or superresolution (SR)14 SPEN images. There
has increased the research on correcting Nyquist ghost-
ing,15–19 and one of the most commonly used methods
is the navigator-based method, which uses k-space lines
without PE gradients to calculate the phase difference
between even and odd images. However, due to the com-
plex nonuniformity of the field, the linear assumption
of phase change is not accurate enough, especially in
high-field MR acquisition. As we mentioned previously,
one advantage of the SPEN sequence is that it can directly
obtain low-resolution images and do the Nyquist ghost
correction without the need for reference scans17–19 or
parallel-imaging techniques.4 Previous reports by Seginer
et al.20 and Chen et al.21 show that two low-resolution
SPEN images obtained respectively from even echo data
and odd echo data of a single SPEN data can provide
information on phase inconsistency for implementing 2D
Nyquist ghost correction without reference scans. How-
ever, it is still difficult for conventional methods to correct
the Nyquist ghosts in SPEN images perfectly because of
the phase-wrap problem, especially for low SNR images.

Recently, more and more researchers have applied
deep learning methods in the field of MRI Nyquist ghost
correction as the strong feature extraction ability of con-
volutional neural networks.22–24 Lee et al.22 combined
deep learning with a low-rank Hankel matrix based on an

annihilating filter to correct Nyquist ghosts in EPI images;
this represented the phase-mismatch correction problem
as a missing k-space line interpolation problem for even
and odd k-space data. Chen et al.23 proposed an end-to-end
Nyquist ghost–correction model based on U-net25 for the
EPI sequence. This method corrected Nyquist ghosts in the
image domain, but the corrected amplitude image is prone
to blurring. Wang et al.24 corrected Nyquist ghosts by using
a complex-valued network to reconstruct multicoil images
without requiring coil sensitivity maps. However, all these
deep learning–based Nyquist ghost–correction methods
are supervised, which requires paired data sets during
network training. In real MRI experiments, it is usually
challenging to obtain such paired data sets. In addition,
supervised methods are susceptible to distribution shifts
and often yield unsatisfactory results on examples that do
not pertain to the distribution of the training data.26,27

In this paper, we propose a new unsupervised Nyquist
ghost–correction method that takes advantage of spa-
tiotemporal encoding, which provides PE information
directly in the spatial domain and a deep learning model
that can solve complex problems. The deep learning model
works in an unsupervised way that does not need paired
data sets to train (RERSM-net), and it can be applied to
data from different domains without the need for addi-
tional training. First, we use the residual encoder (RE)28

to extract the phase-difference map based on the even
and odd images. As the SPEN pulse sequence provides
direct spatial information in the PE dimension and can
avoid the folding problem, it is relatively easy to obtain
the phase information from the even and odd images.
Then, the phase-difference maps between the even and
odd images are generated by the restricted subspace map-
ping (RSM).29–31 Third, the physical model of SPEN is
applied to obtain the SR cycle-back images. Finally, the
network is trained by exploring the cycle-consistency loss
between the corrected images and SR cycle-back images.
Both simulation and real in vivo MRI experiments demon-
strated that our method could correct the Nyquist ghosts
in the SPEN experiment.

2 METHODS

2.1 Theory of Nyquist ghosts
in single-shot SPEN

To make this paper self-contained, we briefly review the
SPEN sequence and Nyquist ghost correction in SPEN.
A fully refocused single-shot SPEN sequence enabling
multislicing10 is used in this study and is shown in
Figure 1A. The pulse sequence starts with a conventional
slice selection, after which a delay equal to half of the total
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(A)

(B)

F I G U R E 1 Overall architecture of the proposed unsupervised model for correcting Nyquist ghosts of single-shot spatiotemporal
encoding (SPEN), with the real and imaginary components of the low-resolution odd echo image Sodd and even echo image Seven as input,
and a complex high-resolution ghost-corrected image 𝜌

cor as output. The residual encoder and restricted subspace mapping network
(RERSM-net) includes a residual encoder module and a restricted subspace mapping (RSM) module. The mean-squared error (MSE) loss
between the low-resolution, phase-corrected SPEN image Scor and superresolution cycle-back image Scor

cycle is explored to train the network.

acquisition time is inserted, followed by an application of a
linear frequency–swept chirp pulse in conjunction with a
gradient along the PE direction of a duration equal to half
the total acquisition time. This choice of chirp duration
together with the previous delay ensures T2* refocusing
of each acquired RO echo in contrast to EPI, where only
echo at the center of k-space is T2* refocused. Application
of a linear frequency sweep in the presence of a gradient
results in a spatially dependent quadratic phase profile,
and the decoding gradient blips Ga along the PE direc-
tion are used to sequentially refocus the spins along the
PE dimension and displace the apex of the quadratic phase
profile in order to traverse the whole FOV along the PE
dimension.8 After performing FT along the RO direction,

the SPEN signal of the k-space points km can be described
as follows:

S(km) ∝ ∫ 𝜌(y)ei(ay2+by+kmy)dy (1)

where y represents the coordinate of PE dimension; 𝜌(y)
represents the spin density; a and b represent the quadratic
and linear phase coefficients, respectively. Equation (1)
indicates that the SPEN image can be extracted by the
stationary phase approximation through 𝜌(y) ∝ |S(km(y))|
with resolution limited to

√
𝜋∕|a|.32 To improve the res-

olution, the SR14 method is always needed, in which the
phase integral in Equation (1) assumes a discretized object
made of N elements:
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BAO et al. 1371

S(km) ≈
N∑

n=1
𝜌n ∫ ei(ay2+by+kmy)dy =

N∑

n=1
𝜌nAmn (2)

where 𝜌n represents the approximate density in voxel
n, and Amn represents an element of the SR matrix A.
Equation (2) can be rewritten in matrix form as S = A𝜌,
and the imaged object 𝜌 can thus be determined by apply-
ing the inverse matrix of A, A(−1) onto S, 𝜌 = A(−1)S.32

In single-shot experiments, the rapid change of the RO
gradients will cause a phase mismatch 𝜃dif between even
echo signal Seven and odd echo signal Sodd, as follows:

Sodd

Seven
= ei𝜃dif (3)

Affected by the characteristics of the SR matrix A, the
even/odd phase difference can easily result in Nyquist
ghosts in the high-resolution SR image 𝜌 of S.20 Conven-
tional methods20,21 usually eliminate the Nyquist ghosts by
estimating the phase difference 𝜃dif and correcting it (the
details can be found in Figure S1):

⎧
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(4)

where Scor
even represents the phase-corrected even echo sig-

nal; Scor represents the fully phase-corrected signal; A(−1)

represents the operation used for SR; and 𝜌
cor represents

the high-resolution ghost-corrected image.

2.2 Model for Nyquist ghost correction

This work aims to design an unsupervised Nyquist
ghost–correction model based on a RERSM-net. The over-
all architecture of this new model is shown in Figure 1B,
which primarily includes three steps: First, we take the
four-channel images (the real part image and imaginary
part image of low-resolution even and odd images) as
the input of the RERSM-net to extract the phase infor-
mation, and generate the phase-difference map between
the low-resolution even and odd images; then, we use
the phase-difference map to correct the phase of the
low-resolution even image; and finally, we recombine
the low-resolution, phase-corrected even image with the
low-resolution odd image to obtain a full low-resolution,

phase-corrected image and apply SR reconstruction to
obtain the final high-resolution, ghost-corrected image.

The detailed structure of RERSM-net is shown in
Figure 2. It contains a RE module (Figure 2A) and a RSM
module (Figure 2B). The main idea of the RE module is
to generate the coefficients for the phase-difference map
in the restricted subspace of the RSM module (i.e., these
coefficients are expected to be close to the inner product of
the phase-difference map and the predefined cubic spline
vectors in RSM).29–31 Cubic spline basis function is a com-
monly used mathematical function in interpolation and
fitting problems. They are used for smooth interpolation
or fitting of curves between discrete data points. Cubic
spline basis functions consist of multiple cubic polynomi-
als, which are called basis functions, and smoothly connect
adjacent data points. By reasonably selecting cubic spline
basis functions, using cubic splines for interpolation or fit-
ting, and calculating the inner product between the basis
function vectors to determine the weight or coefficient of
the interpolation or fitting curve, the data interpolation
and fitting can be effectively carried out, thereby obtain-
ing curves that meet the requirements of data features and
smoothness. The RE module consists primarily of multi-
ple residual blocks33 and down-sampling operation. The
residual block is combined with the down-sampling to
extract the deep phase feature of the input low-resolution
even and odd images gradually. The residual connection is
introduced in each residual block to prevent the network
from overfitting. At the output end of the RE module, a
1× 1 convolution layer is performed to fuse the multichan-
nel feature maps, yielding a single-channel phase feature
map. At the same time, the Leaky ReLU (rectifier linear
unit) is used after the 1× 1 convolution layer to convert the
phase feature map to the coefficients and ensure that the
value of the coefficients can be positive or negative. Two
sets of predefined cubic spline vectors (basic matrices) (i.e.,
calculating the inner product of the basic matrices and
the deep-learned coefficients matrix) form the RSM mod-
ule. These two matrices form the inner product to obtain
the corresponding predicted phase-difference map in the
image space.

2.3 Unsupervised loss function

In this study, we introduce a new, unsupervised,
cycle-consistency loss function between the corrected
images and SR cycle-back images. This loss function relies
on the fact that the inverse of A does not necessarily exist
due to the large condition number of A; consequently,
A(−1)A is not equal to the identity, producing images with
ghosts, if no additional measures are taken to reduce
the condition number of A.

20,21 As a result, this implies
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1372 BAO et al.

F I G U R E 2 (A) Detailed structure of the residual encoder module, including multiple cascaded blocks. Combine the residual block
with the down-sampling operation to gradually extract the deep phase feature and introduce the residual connection into each residual block
to avoid network overfitting. Use a 1× 1 convolution layer to fuse the multichannel feature maps to generate a single-channel phase feature
map and use a Leaky ReLU (rectifier linear unit) to ensure that the phase value can be positive or negative. (B) Principle of the restricted
subspace mapping module. Mapping the deep phase feature (size= 3× 3) extracted by the residual encoder to a smooth phase-difference map
(size= 48× 96) through two sets of predefined basis matrices (size= 48× 3 and 3× 96).

that, due to deviation of A(−1)A from identity, increased
phase difference between the even and odd echoes will
lead to higher error between the corrected image and
image obtained after applying A(−1)A to the corrected
image. This is illustrated in Figure 3C, where the bigger
the phase difference between even and odd images, the
larger the cycle-consistency loss will be. In Figure 3, S
represents the low-resolution SPEN image; 𝜌 represents
the high-resolution SR image of S; Scycle represents the
low-resolution SR cycle-back image of S; and Loss repre-
sents the mean-squared error (MSE) between S and Scycle.
It can be described as follows:

⎧
⎪
⎨
⎪
⎩

𝜌 = A(−1)S
Scycle = A𝜌

Loss = MSE
(

S, Scycle
)

(5)

Taking the linear even/odd phase difference (ax + b,
where a is the linear coefficient and b is the constant)
as an example, the larger the a and b, the more severe
the Nyquist ghosts in SR image 𝜌 and the larger the Loss
between low-resolution SPEN image S and SR cycle-back

image Scycle. Based on this SR cycle-consistency charac-
teristic of SPEN, we propose an unsupervised loss func-
tion that does not need the ground-truth image, but only
calculates the MSE loss between the full low-resolution,
phase-corrected SPEN image Scor and SR cycle-back
image Scor

cycle (Figure 1B). The proposed unsupervised
cycle-consistency loss function is described as follows:

LossMSE =
1

w × h

w∑

i=1

h∑

𝑗=1

(

Scor(i, 𝑗) − Scor
cycle(i, 𝑗)

)2
(6)

where w and h represent the width and height of Scor,
respectively; Scor(i, 𝑗) represents the pixel value at position
(i, 𝑗) of Scor; and Scor

cycle(i, 𝑗) represents the pixel value at
position (i, 𝑗) of Scor

cycle.

2.4 Comparison between supervised
training and unsupervised training

As we all know, supervised methods face some limita-
tions that can be addressed by unsupervised approaches.
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BAO et al. 1373

F I G U R E 3 Cycle-consistency loss between the Nyquist ghost–corrected images and superresolution (SR) cycle-back images to train the
network. S represents the low-resolution spatiotemporal encoding (SPEN) image; 𝜌 represents the high-resolution SR image; and Scycle

represents the low-resolution cycle-back image of S. (A) No phase difference between the even and odd echoes of S. (B) Linear phase difference
(ax + b) between the even and odd echoes of S. (C) Grid chart of the unsupervised loss; the x-axis represents the linear coefficient a (−1∼ 1),
and the y-axis represents the constant b (−5∼ 5). The smaller the a and b, the smaller the loss between S and Scycle. FFT, fast Fourier transform.

First, a large amount of data with ground truth is rou-
tinely required for network training when supervised
methods are used. Second, unsupervised networks are
more immune to distribution shifts and display much
higher robustness toward out-of-distribution samples.26,27

To demonstrate this advantage, the comparison between
supervised training and unsupervised training was also
examined. All models are trained on human data and
are tested either on the simulated human or rat data. As
we can observe from Figure S2, three kinds of training
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1374 BAO et al.

are performed in this work. The first one is the super-
vised end-to-end training, and the input of the model is
high-resolution uncorrected images (after the SR of the
low-resolution images with even/odd phase difference).
The training loss is set to the MSE between the output of
the network and the ground-truth images that are obtained
by the simulation with no even/odd phase error. Here, the
model Dense-net34 was used. The second kind of train-
ing is also supervised; however, we introduce the physical
model here. The even/odd problem can be addressed by
applying the phase-difference map that originates from the
alternate polarity gradients. Thus, the network is trained
to obtain the phase-difference map rather than the final
images, and the training loss is also set to the MSE between
the output of the network and the ground-truth images.
The model is Dense-net or RERSM-net. The last kind is the
unsupervised model that is used in this work. The train-
ing loss is the cycle-consistency loss between the corrected
images and SR cycle-back images.

2.5 Experiments

To quantitatively compare the Nyquist ghost–correction
results, single-shot SPEN simulations were performed
based on the T1-weighted (T1w) images downloaded
from the Human Connectome Project website.35,36 All
the T1w images were acquired on the standard Human
Connectome Project 3T Siemens MRI scanner with
32-channel head coil. To obtain SPEN images, the pulse
sequence depicted in Figure 1A was simulated with
the corresponding acquisition and encoding parame-
ters: FOV= 4× 4 cm2, sampling matrix= 256× 256 (RO
× PE), effective TE= 36.0 ms, TR= 4.0 s, R-value of
chirp pulse= 400, and pulse length= 18 ms. A total of
32 spins per voxel were used to avoid discontinuities,
and the simulations were performed in MATLAB using
the Spintool package (Tal 2020; Visual Display Inter-
face [VDI] computer software; retrieved from http://www.
vdisoftware.net). The details of the simulations can be
found in Figure S3. A total of 3000 simulated slices
(size= 256× 256) were obtained: 1800 slices for training,
200 slices for validation, and 1000 slices for testing. The
slices from different subjects were pooled together and
randomly divided in training, validation, and testing sets
without considering to which subject each slice pertained.
Due to data splitting in a non-subject-specific manner,
there could be a possibility that similar slices from the
same subject are included in different data sets and cause
the potential basis for the network. However, we do not
expect this to affect the overall results, as the network is
trained in an unsupervised manner, relying on a physical
model–based cost function with cycle consistency loss. It

is also worth noting that the network presented herein will
only perform the phase correction between even and odd
data; hence, it will not change the energy of the images.
Therefore, although we do the correction for every sin-
gle slice, the intensity of the whole subject will remain
constant.

The real MRI data were acquired on a Bruker Biospec
7T/20-cm MRI scanner using a RARE37 sequence,
single-shot EPI sequence, and single-shot SPEN sequence
of water phantom, orange, cucumber, and in vivo rats. The
specific sequence parameters can be found in Table S1.
For all the water phantom, orange, and cucumber exper-
iments, a 72-mm-diameter volume coil was used for
both RF transmission and signal detection. For the in
vivo rat experiment, a 72-mm-diameter volume coil was
used for RF transmission and a quadrature surface coil
for signal detection. The rats were anesthetized with
isoflurane mixed with oxygen (4.0%–5.0% for induction,
0.5%–1.0% for maintenance). The respiratory rate (∼30–50)
was continuously monitored during the scan under
the anesthesia. The body temperature was maintained
with 37◦C water circulation. All animal experiments
were conducted following the National Institutes of
Health animal care guidelines, and the procedures
were approved by the Animal Ethics Committee of
Innovation Academy for Precision Measurement Sci-
ence and Technology, Chinese Academy of Sciences
(APM22022A).

In this study, the conventional method,20 the
state-of-the-art supervised Dense-net method,34 and
U-net were used for the comparison with RERSM-net.
As mentioned in Section 2.4, the Dense-net was used for
comparing supervised and unsupervised learning, and
U-net was used for comparing the proposed RERSM-net.
In terms of the model parameters, Dense-net has 1.48
million, RERSM-net has 19.58 million, and U-net has
34.53 million parameters. More information on U-net
can be found in Figure S4 and Table S2. The objective
evaluation for simulated data adopts the commonly used
peak SNR (PSNR), structural similarity index measure-
ment (SSIM),38 and correction time for one slice. All the
deep learning–based experiments were performed in the
PyTorch framework for the Python 3.7 environment, and
the training strategies were optimized in the same com-
puter system with Intel i7-8700 K CPU, 32 GB RAM, and
an NVIDIA Geforce GTX 2080 Ti with 11 GB GPU mem-
ory. In terms of training parameters, an Adam optimizer39

was used to train the network and update the network
parameters. The initial learning rate was set to 0.0005, and
it decayed by a factor of 0.95 after 5 epochs. The batch size
was 4, and a total of 150 epochs were trained (the source
code is available at https://github.com/baoqingjia/SPEN_
correction).
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3 RESULTS

3.1 Validation for simulated data

Figure 4A shows the Nyquist ghost–correction results
for one representative slice of simulated data with a lin-
ear phase difference map. Figure 5A shows the Nyquist
ghost–correction results for one representative slice of
simulated data with a nonlinear phase-difference map.
For each slice, the first row shows the uncorrected ghost
image, ground-truth image, and ghost-corrected images
of the conventional method, state-of-the-art supervised
deep learning method (Dense-net34), and the proposed
unsupervised RERSM-net. The second row shows the

zoomed region of the first row’s images, and the third
row shows the reference phase-difference map in the
simulation experiment and corresponding phase-
difference maps obtained by the conventional method,
Dense-net, and the proposed RERSM-net. Figures 4A and
5A illustrate that RERSM-net can obtain much better
ghost-corrected images compared with the conventional
method. This can be particularly well perceived from
the zoomed images shown in the second row. There
are remaining Nyquist ghosts in the images corrected
by the conventional method, especially in the case of a
nonlinear phase-difference map. However, regardless of
linear or nonlinear phase-difference map, the proposed
RERSM-net can correct Nyquist ghosts effectively.

(A)

(B)

F I G U R E 4 Nyquist ghost–correction results for one representative slice of simulated data with a linear phase-difference map. (A) The
first row from left to right shows the ground-truth image, uncorrected ghost image, and ghost-corrected images of the conventional method and
proposed residual encoder and restricted subspace mapping network, respectively. The second row shows the zoomed region of the first row’s
images. (B) Quantitative results of peak SNR (PSNR) and structural similarity index measurement (SSIM) for various comparison methods.
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(A)

(B)

F I G U R E 5 Nyquist ghost–correction results for one representative slice of simulated data with a nonlinear phase difference map. (A)
The first row from left to right shows the ground-truth image, uncorrected ghost image, and ghost-corrected images of the conventional
method and proposed residual encoder and restricted subspace mapping network, respectively. The second row shows the zoomed region of
the first row’s images. (B) Quantitative results of peak SNR (PSNR) and structural similarity index measurement (SSIM) for various
comparison methods.

Similarly, Dense-net also performs much better than the
conventional ghost-correction method.

Figure 4B summarizes the quantitative compari-
son between the uncorrected ghost images and the
ghost-corrected images of the conventional method,
Dense-net, and the proposed RERSM-net on the whole
simulated test-data linear phase-difference map. In
terms of PSNR/SSIM quantitative metrics, the proposed
RERSM-net score is 38.03± 2.08 dB/0.96± 0.02, which
is higher compared with 35.79± 2.59 dB/0.90± 0.03 for
the conventional method, 37.36± 2.93 dB/0.95± 0.04
for Dense-net, and 13.75± 4.12 dB/0.66± 0.06 for the
uncorrected ghost images. In terms of the Nyquist

ghost–correction time for a single slice, the conven-
tional method takes 2.727 s with CPU, and the proposed
RERSM-net takes only 9 ms with GPU, which is still
less than 11 ms necessary for Dense-net. For nonlin-
ear phase-difference correction, the proposed deep
learning–based correction method can obtain much bet-
ter results compared with the conventional method,
as shown in Figure 5B. In terms of PSNR/SSIM quan-
titative metrics, the proposed RERSM-net score is
36.01± 2.42 dB/0.94± 0.03, which is higher compared
with 30.83± 3.16 dB/0.87± 0.05 for the conventional
method, 35.35± 3.53 dB/0.93± 0.05 for Dense-net, and
11.31± 4.23 dB/0.64± 0.08 for uncorrected ghost images.
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BAO et al. 1377

F I G U R E 6 Nyquist ghost–correction results for water phantom, orange, and cucumber. The first and second rows show the results of
water phantom, and the third and fourth rows show the results of orange and cucumber, respectively. The columns from left to right show
the MR images obtained by the RARE sequence and single-shot EPI sequence with reference scan correction, the ghost-uncorrected
spatiotemporal encoding (SPEN) images, and the ghost-corrected SPEN images for the conventional method and proposed residual encoder
and restricted subspace mapping network, respectively.

3.2 Results for real MRI data

Figure 6 shows the Nyquist ghost–correction results for
two water phantoms, orange, and cucumber. The first
and second rows show the results of the water phantom,
and the third and fourth rows show the results of orange
and cucumber, respectively. Figure 7 shows the Nyquist
ghost–correction results for two representative slices of in
vivo rats. The first column shows the MRI images obtained
by the RARE sequence. The RARE images have high
resolution with a clear texture of details, but the RARE
sequence requires about 40 s of acquisition time for a single
slice. The second column shows the MRI images obtained
by the single-shot EPI sequence with reference scan cor-
rection.40 However, the EPI images are distorted due to
the inhomogeneous magnetic fields, especially evident
for water phantom and orange. The third column shows
the uncorrected ghost images obtained by the single-shot

SPEN sequence. The overlapping Nyquist ghosts obscure
most of the details of the tissue. The fourth and fifth
columns show the ghost-corrected images of the conven-
tional method and proposed RERSM-net, respectively. The
Nyquist ghosts still can be noticed in the images from the
conventional method, especially in the zoomed regions.
The proposed RERSM-net can correct Nyquist ghosts more
effectively.

3.3 Ablation experiment of the
unsupervised RERSM-net

To examine the improved robustness of the unsupervised
network (RERSM-net) toward out-of-distribution sam-
ples, we compare the supervised and the unsupervised
models. All the models are trained on human data and
tested on either the simulated human or rat data. The
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1378 BAO et al.

F I G U R E 7 Nyquist ghost–correction results for two representative slices of in vivo rats. The columns from left to right show the MR
images obtained by the RARE sequence and single-shot EPI sequence with reference scan correction, the ghost-uncorrected spatiotemporal
encoding (SPEN) images, and the ghost-corrected SPEN images for the conventional method and proposed residual encoder and restricted
subspace mapping network, respectively.

comparison results are shown in Figure 8. All three kinds
of training can obtain good results for human data, as
the model is training on human data. The PSNR/SSIM
of unsupervised RERSM-net (38.03± 2.08 dB/0.96± 0.02)
are almost similar to the metrics of the supervised
Dense-net (37.36± 2.93 dB/0.95± 0.04), supervised
RERSM-net (36.90± 2.23 dB/0.94± 0.04), and the con-
ventional method (35.79± 2.59 dB/0.90± 0.03). However,
the results delivered on rat data were significantly infe-
rior for the supervised learning, even with the physical
information of the SPEN. The PSNR/SSIM of unsuper-
vised RERSM-net (30.01± 2.56 dB/0.90± 0.04) are much
higher than the metrics of the supervised Dense-net
(18.37± 4.32 dB/0.74± 0.08) and supervised RERSM-net
(22.90± 3.55 dB/0.81± 0.06), and similar to the conven-
tional method (34.06± 2.47 dB/0.92± 0.03). Conversely,
the unsupervised model can still obtain good results for rat
data when applying the pretrained, unsupervised model
obtained by human data.

In addition, we replace RERSM-net with U-net and
regard the output of U-net as the phase-difference map,
training U-net with the same unsupervised loss as used
for the RERSM-net training. The results are shown in
Figure S5. It can be noticed that the phase-difference
maps generated by U-net are still not sufficiently smooth
and caused some Nyquist ghosts in the final, corrected
images. The absolute error map of the conventional
method is also larger, indicating that the corrected
image of the proposed RERSM-net is closer to the
ground-truth image. The PSNR/SSIM of RERSM-net is
also much higher than the metrics of the U-net model.
Additionally, an ablation experiment with or without
residual block in the RERSM-net was also performed

(Figure S6) to demonstrate the advantage of the residual
connection.

4 DISCUSSION

This work has proposed a new method for Nyquist ghost
correction in single-shot SPEN images that arise from
the phase mismatch between even and odd echoes. As
shown in Figures 4–7, both qualitative image and quanti-
tative metrics demonstrate that our proposed method out-
performs the state-of-the-art conventional method, espe-
cially in the case of a nonlinear phase-difference map.
Additionally, the Nyquist ghost–correction time for a sin-
gle slice in the proposed method is less than 10 ms,
which is much shorter compared with the conventional
method.

The main limitation of the conventional method may
be due to phase unwrapping and quadratic polynomial
fitting, especially for nonlinear phase-difference maps
caused by eddy current, shown in Figure 5A. The con-
ventional method uses the arctangent function to calcu-
late the phase-difference map corresponding to the SR
even and odd images, then applies phase unwrapping to
restore the original phase value from the phase wrapped
within a periodic interval (−π∼π). Due to the low SNR,
phase unwrapping may introduce an accumulation of a
phase error. In this work, we try to address this phase
unwrap problem by deriving phase-difference maps by the
deep learning method. Particularly, in the RERSM-net,
we chose spline functions as our basis set, as shown in
Figure 2B, where the feature maps in RE’s output layer cor-
respond to the coefficients in the restricted low-resolution
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BAO et al. 1379

(A)

(B)

F I G U R E 8 Reconstruction results of the unsupervised method and the supervised method on human data (A) and rat data (B). The
first row from left to right shows the ground-truth image, uncorrected ghost image, and ghost-corrected images of the conventional method,
supervised Dense-net, supervised residual encoder and restricted subspace mapping network (RERSM-net), and unsupervised RERSM-net,
respectively. The second row shows the quantitative results of peak SNR (PSNR) and structural similarity index measurement (SSIM) for
various comparison methods.

subspace. First, this helps to avoid discontinuities in
the derived phase-difference maps, as using a set of
smooth basis functions can enforce smoothness on the
phase-difference map, by definition. However, for certain
cases it might be necessary to extend the set of basis
functions to include higher-order splines to account for
rapidly changing phase in phase-difference maps, such as

in the presence of flow or severe variations in magnetic
field susceptibility. Nonetheless, even in these cases, we
expect the phase-difference map between even and odd
echoes to be smooth in the sense of not having disconti-
nuities. Second, use of spline functions reduces the num-
ber of parameters by constraining the phase-difference
map to a subspace spanned by the basis functions. The
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number of parameters is 19.58 million, which is almost
half the number of parameters of a common U-net
(34.49 million).

It is worth mentioning that the main advantage of this
Nyquist ghost–correction method is that it is based on
unsupervised training, without ground-truth data (label),
which is often challenging to obtain.41 We calculate the
cost function using the physical forward problem based
on the characteristic of spatiotemporal encoding during
traditional training without a need for ground-truth data.
With this physical forward model, we also try to correct
the images directly from a single slice (“no pre-training
network”). Although the generalization will not consti-
tute a challenge for this “no pre-training network,” it will
take much longer time to correct the images (∼10 s for one
image). In this work, we pretrained the network with only
simulated data and tested the network with both simulated
and real in vivo MRI data.

This new unsupervised model is only trained for the
correction of Nyquist ghosts in single-shot SPEN. For
future work, we plan to expand this unsupervised method
for motion artifact correction in multishot SPEN.10 Com-
pared with single-shot SPEN, the artifacts of multishot
SPEN are more complex. Not only the phase difference
between the even and odd echoes of each shot will cause
Nyquist ghosts, but also the involuntary movement of
the mice or humans will introduce the phase difference
between each shot and cause motion artifacts, especially
in diffusion-weighted MRI. In addition, SR in SPEN recon-
struction is also an interesting inverse problem.42,43 In
particular, some novel unpaired learning algorithms have
been published to overcome the lack of paired data in the
real world for SR.44–46 In the present scope of this paper,
we limited ourselves to addressing only the even-odd
phase-correction issue. However, we believe that the deep
learning methods that combine SR and phase correction
for SPEN will provide better images. We also plan in our
future work to study and try to resolve the issues associated
with the SR part.

In addition, SR formulated as an inverse problem in
SPEN reconstruction is also of particular interest.42,43 In
this context, some novel unpaired learning algorithms
have recently been published to overcome the lack of
paired data in the real-world applications of SR.44–46

However, in the present scope of this paper, we limited
ourselves to addressing only the issue of even-odd phase
correction. We believe that the deep learning methods
that combine SR and even-odd phase correction and SR
for SPEN will provide better images. We also plan in our
future work to address resolving the issues associated with
SR part.

Although in the present study we did not rely on mul-
tiple receiver information, our method could be integrated

with multiple receivers (i.e., multicoil information could
be used to reconstruct higher-resolution, artifact-free
images from even and odd echoes of SPEN acquisition
using the SUSPENSE approach47 (SENSE implementa-
tion in case of SPEN), similar to the MUSE approach48 in
which images for each of the interleaved shots are recon-
structed to obtain per-shot phase maps. This would allow
the determination of a more precise phase-difference map,
particularly in the case if SPEN data are being undersam-
pled along the PE direction, as, for example, would be the
case of multishot SPEN, if for each shot even and odd
echoes are analyzed separately.

5 CONCLUSIONS

This work proposes a Nyquist ghost–correction deep learn-
ing model that takes advantage of both spatiotempo-
ral encoding, which provides PE information directly in
the spatial domain, and the deep learning model, which
can offer a powerful way to solve complex problems. By
exploring the cycle-consistency loss between the Nyquist
ghost–corrected images and SR cycle-back images, this
model is trained without explicit knowledge of the
ground-truth phase-difference map or ground-truth data.
Results using simulated and preclinical data sets demon-
strate that our method outperforms the conventional
method, and the speed is an order of magnitude faster.
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SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

Figure S1. Details of the conventional Nyquist-ghost cor-
rection method of single-shot spatiotemporal encoding
(SPEN). First, separate the even and odd rows of the
original phase-distorted SPEN data, and perform Fourier
transform (FT) along the readout (RO) direction to obtain
low-resolution odd echo image Sodd and even echo image
Seven. Second, perform superresolution (SR) reconstruc-
tion along the phase-encoding (PE) dimension to obtain
high-resolution odd echo image 𝜌odd and even echo image
𝜌even. Then, perform the quadratic polynomial fitting on
𝜌odd and 𝜌even to unwrap the phase difference map 𝜃dif,
which is used to correct the phase of Seven to keep
consistent with the phase of Sodd. Next, recombine the
phase-corrected, low-resolution, even echo image Scor

even
with Sodd and obtain a full low-resolution, phase-corrected
SPEN image Scor. Finally, perform SR reconstruction
along the PE dimension to obtain a high-resolution
ghost-corrected SPEN image 𝜌

cor.
Figure S2. The structure of supervised and unsuper-
vised method. (A) The Supervised-1 method directly
inputs the image into the network, then outputs the
image. First, the uncorrected, low-resolution image is
transformed into an uncorrected, high-resolution image
through superresolution, and then the uncorrected,

high-resolution image is sent to the Dense-net or U-net
network to obtain the corrected image. Next, the loss
between the corrected image and the true value image
is calculated. (B) The Supervised-2 method inputs the
odd and even echo images into the Dense-net or U-net
to obtain a phase map. The phase map is used to correct
the even echo image and then combine with the odd echo
image to obtain a corrected low-resolution image. Finally,
the corrected high-resolution image is obtained through
superresolution, and the loss is calculated using this image
and the true value image. (C) The proposed unsupervised
method.
Figure S3. Details of the production process of simulated
data. After setting the parameters of the single-shot spa-
tiotemporal encoding (SPEN) pulse sequence used in the
simulation, the T1-weighted (T1w) anatomical images of
the human brain were sampled using the SPEN sequence,
and Fourier transform (FT) along the readout (RO) direc-
tion was performed to obtain low-resolution SPEN images
S. Then, the odd and even echoes of S were separated,
and random linear/nonlinear phases were applied to the
even echo images Seven. Phase-distorted even echo images
Sdis

even and the original odd echo images Sodd were used
as the simulated data for RERSM-net. Finally, Sdis

even and
Sodd were recombined to obtain full phase-distorted SPEN
images Sdis as the simulated data for the conventional
method. Because Human Connectome Project (HCP) T1w
images contained only magnitude and no phase infor-
mation, to obtain an actual k-space, a phase for T1w
images was generated. This was performed by creating a
3× 3 matrix of random numbers. This 3× 3 matrix was
zero-padded to the corresponding T1w image size and
Fourier-transformed. Because only elements at the cen-
ter of this matrix corresponding to an area of 3× 3 were
distinct from zero, the Fourier-transformed matrix con-
tained only low-frequency information equivalent to a
smooth phase. The final image used as an input to sim-
ulation was obtained by multiplying the T1w image with
a complex exponential of the generated phase map. To
obtain image S, the SPEN pulse sequence depicted in
Figure 1A was simulated with the corresponding acquisi-
tion and encoding parameters: FOV= 4× 4 cm2, sampling
matrix= 256× 256 (readout [RO] × phase encode [PE]),
effective TE= 36 ms, TR= 4 s, R value of chirp pulse= 400,
and pulse length= 18 ms. A total of 32 spins per voxel were
used to avoid discontinuities, and the simulations were
performed in MATLAB using the Spintool package (Tal
2020; Visual Display Interface [VDI] computer software;
retrieved from http://www.vdisoftware.net).
Figure S4. Detailed structure of U-net used for compara-
tive experiment.
Figure S5. Comparison of the proposed Residual Encoder
and Restricted Subspace Mapping (RERSM-net) and
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U-net. (A) The first row from left to right shows the
uncorrected ghost image, ground-truth image, and
ghost-corrected images by U-net and the proposed
RERSM-net, respectively. The second row shows the
zoomed region of the first row’s images. The third row
shows the absolute error maps. The fourth row shows
the phase difference maps. (B) Quantitative results of
peak SNR (PSNR) and structural similarity measurement
(SSIM) for various comparison methods.
Figure S6. Comparison between the proposed Resid-
ual Encoder and Restricted Subspace Mapping network
(RERSM-net) and the ablation experiment with resid-
ual structure removed by the network (A) shows the
ground-truth image and uncorrected ghost image; the
corrected images of the RERSM-net without residual
structure and the complete RERSM-net are presented in
the first row from left to right. The second row shows

the zoomed area of the first-row image. The third line
displays the absolute error map (differences between the
Nyquist ghost–corrected image and ground-truth image).
The fourth line shows the phase difference plot. (B)
Quantitative results of peak SNR (PSNR) and structural
similarity measurement (SSIM) for various comparison
methods.
Table S1. Pulse sequence parameters.
Table S2. Details of the used U-net in this study.
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