

Supporting Information

for *Adv. Sci.*, DOI: 10.1002/advs.202003594

Fluorine-Driven Enhancement of Birefringence in the Fluorooxosulfate: A Deep Evaluation from a Joint Experimental and Computational Study

Wenqi Jin, Wenyao Zhang, Abudukadi Tudi, Liying Wang, Xin Zhou, Zhihua Yang, Shilie Pan**

Copyright Wiley-VCH GmbHWeinheim, Germany, 2021.

Supporting Information

Fluorine-Driven Enhancement of Birefringence in the Fluorooxosulfate:A Deep Evaluation from a Joint Experimental and Computational Study

WenqiJin,Wenyao Zhang, AbudukadiTudi,Liying Wang, Xin Zhou, Zhihua Yang,Shilie Pan**

Structure refinement

In this work, the crystal data were re-collected at293 and 150 K. We refined the structure, explained and proved the disorders of O/F. The final refined site occupation factors of O1/F1, O2/F2and O3/F3 are 0.53/0.47,0.61/0.39 and 0.93/0.07 at293 K, and are 0.38/0.62, 0.67/0.33 and 0.98/0.02 at 150 K. Furthermore, the structure was checked for possible higher symmetry using the ADDSYM algorithm from the program PLATON and suggested space groupas *Pnma*. Therefore, the structure KSO3F was solved in the space group *Pnma* with disorder, and a satisfying structure model with very low convergence factor $(R_1 = 0.0167)$ can be obtained. Furthermore, for the temperature decreased the *a*-axis shrinks dramatically stronger than the other two,this may be due to the anisotropicexpansion of the crystal. According to the final refinedsite occupation factors of O/F, the site occupation factor of O1 decreases from 0.53 to 0.38 with the temperature decreasing. As shown in Figure S15, we find that the bond distance of S-O(1)/F(1) in the SO₃F tetrahedron increases from 1.488 to 1.527 Å due to the site occupation factor of F1 increasing from 0.47 to 0.62.The bond distance of 1.527Å is closer to the previous reported S-F bond distance and is larger than S-O bonds, which further confirmsthe presence of S-F bonds.Furthermore, the arrangement direction of S-O(1)/F(1) is along the *a*-axis. The distance between two (SO_3F) tetrahedra has decreased from 4.397 to 4.3045 Å with temperature decreased, however, it just decreased from 5.857 to 5.854 Åalong the *b*-axis. So, we believe that the temperature is a key factor for the site occupation factor of O1/F1, and further influences the cell parameters.

NMR spectroscopy

For further to provide sufficient evidence, the NMR spectroscopy was applied. According to the ¹⁹F spectroscopy, we find that the dominant signal at 38.7 ppm may be assigned to F nearest to K. The signals in the chemical-shift regionfrom -66.5to -74.5 ppmmay be assigned to ¹⁹F in tetrahedron(SO_3F) with various nearest neighbor substituents.It is clear that such chemical-shift range spectrum consists of two types of signals which are characterized by narrow and broad peaks, respectively (see the insert in Figure S3).These broad signals are due to the disorder produced by the distribution of F and O atoms in the same crystallographic site, which is consistent with the previous reported.^[1] As we allknow, the chemical shifts of ¹⁹F are very sensitive to the coordination environment of Fatom. The occupation factors of O1/F1,O2/F2and O3/F3are different, and the corresponding chemical shifts of ^{19}F are different, these different ¹⁹F-NMR signals overlap to produce the broadsignal.

Detailed discussion about the calculation of the $KSO₃F$ and $RbSO₃F$

In the process of calculation, virtual crystal approximation (VCA) method^[2] was adopted to model the disorderd structure. We chose two model structures (named $KSO₃F$ (model I) and $KSO₃F$ (model II)) with the occupation of O2 (or O1) being 100% while the F1 (or F2) being 100%, and the occupation of O3 being 100%. And then the $BFGS^{[3]}$ geometry optimization was performed for the two structure models, and the geometry optimization completed successfully. The calculated band gap and birefringence for the two models are listed in Table S8. The two models have different band gap (6.86 eV for model I and 6.92 eV for model II) and birefringence (0.024 for model I and 0.034 for model II). So from the two models, we find that the fluorine atoms can affect the birefringence. In the structure of KSO3F obtained from experiment, the final refined site occupation factors of O1/F1, O2/F2and O3/F3 are0.53/0.47,0.61/0.39 and 0.93/0.07, respectively. Therefore, the model I is more closer to the experimental structure. What's more, the calculated birefringence of $KSO₃F$ (model I) is more consistent with the experimental birefringence of $KSO₃F$, so we adopted the structure model (I) for the further analysis. The same strategy was adopted for $RbSO_3F$. This strategy has been used in the previous work.^[4]

Detailed discussion about the birefringences of $ASO₃F (A = Li, K, Rb, Cs)$ The partial density of states (PDOS) as well as the orbitals (taking the $LiSO₃F$ as example) near the Fermi level show that the $(SO_3F)^{-1}$ is the main origin of the enhanced birefringence, which is also confirmed by the real-space atom-cutting method (Table S4).For the lithium fluorooxosulfate, Li is coordinated with four oxygen atoms, whereas, K, Rb, Cs form KO_7F , Rb O_7F , Cs O_8F (Figure S12), the different coordination influences the arrangement of anionic groups.As shown in Figure S14, in the lithium fluorooxosulfate, the triangular bases (i.e. the $O1O2O2$ plane) of the (SO_3F) tetrahedra are parallel. And the direction of n_{max} parallel to these triangular bases while the direction of n_{min} is vertical to these triangular bases, which means that parallel to the triangular base is the direction of maximum polarizability. In other alkali metal fluorooxosulfates, as shown in Figure S14, the triangular bases of the (SO_3F) tetrahedra are not parallel and have a certain dihedral angle (*φ*).The dihedral angles (*φ*) arelisted in Table S6, from which we can see that the structure with a smaller dihedral angel has a larger birefringence generally. What's more, the density of birefringence-active groups also influences the birefringence. Therefore, considering the influence of the dihedral angle (*φ*) between the triangular bases in thestructure and the density (*ρ*) of anionic group, we defined a geometric factor $N = \rho \cdot \cos \varphi$. From Figure S16, it can be seen that the birefringence-active groups with optimized arrangement and high-density are beneficial to the enhancement of the birefringence. Herein, LiSO₃F has the largest N value, corresponding to the largest birefringence.

Empiricalformula KSO3F Formula weight 138.16

 $\frac{[a]}{R_1} = \sum ||F_0| - |F_c||/\sum |F_0|$ and $wR_2 = \left[\sum w(F_0^2 - F_c^2)^2 / \sum wF_0^4\right]^{1/2}$ for $F_0^2 > 2\sigma(F_0^2)$

Table S2. Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement parameters $(\AA^2 \times 10^3)$ for KSO₃F. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Atom	S.O.F	$\boldsymbol{\chi}$	y	Z,	U_{eq}
		296 K			
K(1)		$-3240(1)$	2500	6603(1)	35(1)
S(1)		692(1)	2500	3073(1)	30(1)
O(1)	0.53	1940(2)	2500	4473(2)	48(1)
O(2)	0.61	$-782(2)$	2500	4099(3)	55(1)
O(3)	0.93	810(2)	457(2)	2016(2)	41(1)
F(1)	0.47	1940(2)	2500	4473(2)	48(1)
F(2)	0.39	$-782(2)$	2500	4099(3)	55(1)
F(3)	0.07	810(2)	457(2)	2016(2)	41(1)
150 K					
K(1)		8257(1)	7500	6597(1)	19(1)
S(1)		4311(1)	7500	3046(1)	18(1)
O(1)	0.38	2982(2)	7500	4464(2)	25(1)
O(2)	0.67	5770(2)	7500	4158(2)	29(1)
O(3)	0.98	4171(1)	5438(2)	2007(1)	22(1)
F(1)	0.62	2982(2)	7500	4464(2)	25(1)
F(2)	0.33	5770(2)	7500	4158(2)	29(1)
F(3)	0.02	4171(1)	5438(2)	2007(1)	22(1)

296 K		150 K		
$K(1)-O(2)$	2.807(2)	$K(1)-O(2)$	2.7546(15)	
$K(1)-O(3)\#1$	2.8302(18)	$K(1)-O(3)\#1$	2.7895(11)	
$K(1)-O(3)\#2$	2.8302(18)	$K(1)-O(3)\#2$	2.7895(11)	
$K(1)-O(1)\#3$	2.885(2)	$K(1)-O(3)\#3$	2.8661(11)	
$K(1)-O(3)\#4$	2.9031(18)	$K(1)-O(3)\#4$	2.8661(11)	
$K(1)-O(3)\#5$	2.9031(18)	$K(1)-O(1)\#5$	2.8805(14)	
$K(1)-O(3)\#6$	3.027(2)	$K(1)-O(3)\#6$	2.9927(11)	
$K(1)-O(3)\#7$	3.027(2)	$K(1)-O(3)\#7$	2.9927(11)	
$K(1)-O(1)$ #8	3.2338(18)	$K(1)-O(1)\#3$	3.2037(8)	
$K(1)-O(1)\#5$	3.2338(18)	$K(1)-O(1)\#8$	3.2037(8)	
$K(1)-S(1)\#6$	3.554(2)	$S(1)-O(3)/F(3)\#9$	1.4298(10)	
$S(1)-O(3)$	1.4296(14)	$S(1)-O(3)/F(3)$	1.4299(10)	
$S(1)-O(3)\#9$	1.4296(14)	$S(1)-O(2)/F(2)$	1.4760(14)	
$S(1)-O(2)$	1.4784(19)	$S(1)-O(1)/F(1)$	1.5274(13)	
$S(1)-O(1)$	1.4889(18)	$O(3)$ #9-S(1)-O(3)	115.18(9)	
$O(3)$ -S(1)-O(3)#9	113.62(12)	$O(3)$ #9-S(1)-O(2)	111.09(5)	
$O(3)$ -S(1)-O(2)	109.73(7)	$O(3)$ -S(1)-O(2)	111.09(5)	
$O(3)$ #9-S(1)-O(2)	109.73(7)	$O(3)$ #9-S(1)-O(1)	107.30(5)	
$O(3)$ -S(1)-O(1)	108.87(7)	$O(3)$ -S(1)-O(1)	107.30(5)	
$O(3)$ #9-S(1)-O(1)	108.87(7)	$O(2)$ -S(1)-O(1)	104.14(8)	

Table S3. Selected bond distances (Å) and angles (deg.) forKSO3F.

Symmetry transformations used to generate equivalent atoms:

Table Dr. Incomes of the real space atom cutting for $L_{\text{D}}\text{O}_{31}$ and $L_{\text{M}}\text{O}_{31}$.			
Compounds	Δn (@1064nm)	Cut Li/Cut Na	Cut $SO_3F/Cut PO_3F$
LiSO ₃ F	0.054	0.054	0.0001
Na ₂ PO ₃ F	0.022	0.022	0.0006

Table S4. Results of the real-space atom-cutting for LiSO₃F and Na₂PO₃F.

Coumpounds Atom-Plane		Distance	Plane-Plane	Angle $(°)$
		(\AA)		
			P10103-010304	33.38
Na ₃ PO ₄	P1-O1O3O4 0.4887		P10104-010304	34.25
			P10304-010304	33.97
			P10102-010203	25.09
	P1-010203	0.3403	P10103-010203	24.97
			P10203-010203	24.81
Na ₂ PO ₃ F			P2O4O5-O4O5O6	25.79
	P2-O4O5O6	0.3528	P2O4O6-O4O5O6	25.60
			P2O5O6-O4O5O6	26.10
			S10102-010204	34.39
Li ₂ SO ₄	S1-O1O2O4	0.4873	S10104-010204	34.61
			S10204-010204	35.14
			S10102-010202	25.03
LiSO ₃ F	S1-O1O2O2	0.3365	S10102-010202	25.03
			S10202-010202	26.37

Table S5. Distance between P/S atom and the triangular base and the dihedral angle between PO/SO plane and the triangular base.

Compounds	φ (°)
LiSO ₃ F	0.00
KSO ₃ F	80.46
RbSO ₃ F	79.61
CsSO ₃ F	61.16

Table S6. Dihedral angle (*φ*) between the triangular bases.

Compounds	$\cos \varphi$	$\sqrt{x}10^{-3} \cdot \hat{A}^{-3}$	$(x10^{-3})$	Δn
LiSO ₃ F		9.492	9.49	0.057
KSO ₃ F	0.1657	10.074	1.67	0.024
RbSO ₃ F	0.1804	9.023	1.63	0.022
CsSO ₃ F	0.4824	8.046	3.88	0.031

Table S7. Data of cos*φ*, *ρ*, *N* value and birefringence.

Structures	E_g (eV) [HSE06]	Лn
$KSO3F$ (model I)	6.86	0.024
$KSO3F$ (model II)	6.92	0.038
$RbSO3F$ (model I)	6.75	0.022
$RbSO3F$ (model II)	6.80	በ በ34

Table S8. Bandgap and birefringence for the models of KSO₃F and RbSO₃F.

Figure S1. Optimized crystal structures of (a) $(NH_4)_2SO_4$, (b) NH_4SO_3F , (c) K_2SO_4 , (d) KSO₃F (model I), (e) KSO₃F (model II), (g) Rb₂SO₄, (h) RbSO₃F (model I), (i) RbSO₃F (model II), (k) Cs2SO4, (l) CsSO3F. Without treated and optimized crystal structure of (f) $KSO₃F$ and (j) $RbSO₃F$.

Figure S2. X-ray powder diffraction patterns of KSO3F.

Figure S3.¹⁹F MAS NMR spectrum of KSO3F. Asterisks denotespinningsidebands.

Figure S4. The KSO3F single crystal under the polarizing microscope.

Figure S5. Calculated refractive index dispersion curves of KSO3F.

Figure S6. IR spectrum of NH₄SO₃F. The peaks at 570 and 590 cm⁻¹ are attributed to O-S-F formation vibration and O-S-O formation vibration, respectively. The peak at 750 cm-1 is interpreted for the S-F stretching vibration. The peaks at 1080 and 1280 cm-1 are ascribed for S-O symmetrical stretching vibration and S-O asymmetrical stretching vibration, respectively. The strong absorptions in the $3500-2900$ cm⁻¹ range are consistent with the $NH⁴⁺$ stretching vibration.

Figure S7. (a) Crystals of NH4SO3F. (b) The thickness of NH4SO3F crystal. (c), (d) The NH4SO3F single crystal under the polarizing microscope. The measured refractive index difference for NH4SO3F is 0.018 and the real birefringence should be equal or larger than 0.018.

Figure S8. Transmission spectrum of K₂SO₄ with dimensions of 3 mm \times 3 mm \times 1 mm (inset).

Figure S9. Transmission spectrum of $(NH_4)_2SO_4$ with dimensions of 3 mm \times 3 mm \times 1 mm (inset).

Figure S10. (a) The thickness of K₂SO₄ crystal. (b), (c) The K₂SO₄ single crystal under the polarizing microscope. (d) The thickness of (NH4)2SO⁴ crystal. (e), (f) The (NH4)2SO⁴ single crystal under the polarizing microscope. The measured refractive index difference for this K_2SO_4 single crystal is 0.002 and the real birefringence should be equal or larger than 0.002. The measured refractive index difference for this (NH4)2SO⁴ single crystal is 0.011 and the real birefringence should be equal or larger than 0.011.

Figure S11. Partial density of states (PDOS) and the specific orbitals in the energy range near the band gaps for (a) Na_3PO_4 , (b) Li_2SO_4 , (c) Na_2PO_3F and (d) $LiSO_3F$.

Figure S12. Coordination environment of metal cation in (a) LiSO₃F, (b) KSO₃F, (c) RbSO3F, (d) CsSO3F.

Figure S13. Coordination environment of metal cation in Na₂PO₃F.

Figure S14. Planes of the triangular base in (a) $LiSO_3F$, (b) KSO_3F , (c) $RbSO_3F$, (d) CsSO3F. Notably, taking KSO3F as an example, the same planes were shown in same color.

Figure S15. Crystal structures at different temperatures.

Figure S16. Birefringence and *N* value of LiSO₃F, KSO₃F, RbSO₃F, CsSO₃F.

References

- [1] J. Dabachi, M. Body, C. Galven, F. Boucher, C. Legein, *Inorg. Chem.***2017**, *56*, 5219.
- [2] L. Bellaiche, D. Vanderbilt, *Phys. Rev. B***2000**, *61*, 7877.
- [3] T. H. Fischer, J. Almlof, *J. Phys. Chem.***1992**, *96*, 9768.
- [4] a) M. L. Zhou, Y. Yang, Y. W. Guo, Z. S. Lin, J. Y. Yao, Y. C. Wu, C. T. Chen, *Chem. Mater.***2017**, *29*, 7993; b) X. Yan, S. Y. Luo, Z. S. Lin, Y. C. Yue, X. Y. Wang, L. J. Liu, C. T. Chen, *J. Mater. Chem. C***2013**, *1*,3616; c) S. J. Han, C. M. Huang, A. Tudi, S. S. Hu, Z. H. Yang, S. L. Pan, *Chem. Eur. J.***2019**, *25*, 11614.