
SUPPLEMENTARY MATERIALS 

Dataset 

The details of data processing are shown in Figure 

S1 and are as follows: 

First, images are registered to align T2w and ADC 

images. Then, cropping based on CNN is applied to 

T2w images (crop a square region encompassing the 

entire prostate region for every T2w slice)1,2. Then, the 

identified square is propagated to the corresponding 

registered ADC slices. Finally, image augmentation 

based on moving Least Squares is applied to obtain a 

larger training dataset. 

FIGURE S1. Details of data processing which consists of  image registration, prostate region detection, and image 
augmentation. 
 

Model training 

Evaluation of model training 

The specific training process is as follows: 

First, we train the coarse segmentation component 

on the dataset to generate coarse prostate masks. Then, 

we concatenate the mp-MRI with the corresponding 

coarse prostate masks generated by the coarse 

segmentation component as the input to the 

classification component. We train the classification 

component to generate the PCa classification results 

and output the CRM. Finally, we fuse the cropped T2w 

images and the corresponding CRM refined by the 

classification component, and feed them to the fine 

segmentation component to train the fine 

segmentation component to deliver more accurate 

prostate masks.  

 
FIGURE S2. Learning curves of Coarse 

Segmentation component. The blue and red lines 

represent training and validation loss, respectively. 

The x axis represents the number of training epochs. 

 
FIGURE S3. Learning curves of Coarse 

Segmentation component. The blue and red lines 

represent training and validation DSC, respectively. 

The x axis represents the number of training epochs. 

 
FIGURE S4. Learning curves of Fine Segmentation 
component. The blue and red lines represent training 
and validation loss, respectively. The x axis represents 
the number of training epochs. 



 
FIGURE S5. Learning curves of Fine Segmentation 

component. The blue and red lines represent training 

and validation DSC, respectively. The 𝑥  axis 

represents the number of training epochs. 

 

Validation of the contribution of segmentation to 

classification 

To further validate improvement of the performance 

of the network when coarse segmentation masks are 

included, we also compared heatmaps obtained by the 

classification component with or without using 

prostate masks, as shown in Figure S6. When using the 

coarse prostate masks, coincidence of the areas in 

heatmaps displaying the highest values with the areas 

where the prostate is located is improved. 

 
FIGURE S6. Comparison of the CRMs obtained by 
the classification component with and without usage 
of the coarse prostate masks. First row: input images. 
Second row: heatmaps obtained without using as an 
input the coarse prostate masks. Third row: heatmaps 
obtained using as an input the coarse prostate masks. 
 
 

Segmentation results 

Comparison of segmentation results of MC-

DSCN and Unet 

The statistical metrics corresponding to different 

models for center B are shown in Figure S8.  

 
FIGURE S7. Comparison of quantitative metrics for 
different segmentation networks, including Unet with 
Dice and hybrid loss, coarse segmentation component 
(Coarse SC), and fine segmentation component (Fine 
SC) for center B. The loss is indicated in brackets, 
including Dice loss (Dice) and segmentation hybrid 
loss (hybrid). Both Coarse SC and Fine SC are based 
on a residual Unet with attention blocks. 
 

Comparison of segmentation results of MC-

DSCN and Unet++ 

To demonstrate the effectiveness of the 

segmentation component in MC-DSCN, we also 

compared our segmentation network with Unet++. 

Comparison of quantitative metrics for different 

segmentation networks are shown in Figure S9 (for 

center A) and Figure S10 (for center B). 

For the coarse segmentation, the quantitative 

metrics of IOU, DSC, and Recall were better when 

using Unet++. For the fine segmentation, the 

evaluation indicators of IOU, DSC, and Precision were 

better when using Unet++. Compared with Unet, 

Unet++ combines the simple features of the shallow 

layer with the abstract features of the deep layer, and 

integrates them through feature superposition. It has 

receptive fields of different sizes, so its performance is 

better than Unet. Moreover, we can notice that for the 

segmentation component, whether Unet or Unet++ is 

used, the performance of Fine SC is always better than 

that of Coarse SC.  

 
FIGURE S8. Comparison of quantitative metrics for 

our segmentation network and Unet++ for center A. 



 
FIGURE S9. Comparison of quantitative metrics for 
our segmentation network and Unet++ for center B. 
 

Classification results 

Comparison of classification results of MC-

DSCN, ResNet50 and VGG16 

Each column from left to right in Figure S11 are the 

ROC curves of the classification component of 

proposed MS-DSCN, ResNet50 and VGG16 for 

different input modes (T2w with mask, ADC with 

mask, mp-MRI with mask, respectively). It can be 

noted from the figures in the first line that for both 

T2w and ADC images, the AUC with coarse masks is 

always higher than the AUC without coarse masks, 

and the AUC with coarse masks for MS-DSCN is the 

highest. And it can be noted from the figures in the 

second line that the AUC of mp-MRI data with coarse 

masks and co-training block is the highest. Overall, for 

all modes, the AUC of VGG16 is the lowest, and the 

AUC of MS-DSCN and ResNet50 are similar. 

However, the number of network parameters of MS-

DSCN (2.15M) is far smaller than ResNet50 (47.07M) 

and VGG16 (65.06M).  

FIGURE S10. From top to bottom and from left to right are the Roc curves of the classification component of 
proposed MS-DSCN, ResNet50 and VGG16 for different input modes, respectively. 
 

Evaluation and choice of hyper-parameters for 

hybrid loss in MC-DSCN  

Evaluation and choice of hyper-parameters for 

hybrid loss during coarse segmentation 

To evaluate loss function of the segmentation 

network, we trained our model using various loss 

functions, including generalized Dice loss (GDL loss), 

weighted cross-entropy (WCE loss), hybrid loss that 

combined GDL and WCE loss, and herein proposed 

loss (GDL loss + WCE loss + rank loss). Table S1 

summarizes the segmentation results using different 

loss functions for the coarse segmentation network. 

GDL loss is region-based loss to profile segmentation 

results at the image level. WCE loss is a distribution-

based loss that attempts to constrain segmentation 

results at the pixel level. Combination of these two 

losses outperforms each one of them applied 

separately, namely, the IOU of the network with the 

hybrid loss is 83.60%, and the IOU only with GDL 

loss is 82.12% (p < 0.05). Our proposed loss also 

contains one boundary-based loss to ensure the 

accuracy of the boundary pixels. Compared to the 

hybrid loss with only GDL and WCE, our proposed 

loss improves the segmentation results, demonstrated 

by the IOU increase from 83.60% to 84.14% (p < 0.05). 

We also investigated hyper-parameters of the 

weighting factor 𝜆1, 𝜆2, 𝜆3 in equation 1 that controls 

the contribution of 𝐿𝑜𝑠𝑠𝐺𝐷𝐿 , 𝐿𝑜𝑠𝑠𝑊𝐶𝐸  and 𝐿𝑜𝑠𝑠𝑟𝑎𝑛𝑘 . 

Table S2 summarized the metrics of the coarse 

segmentation network while increasing 𝜆3 (𝐿𝑜𝑠𝑠𝑟𝑎𝑛𝑘 ) 

from 0.00 to 0.10. Based on these results, we chose to 

set 𝜆1 = 1.0, 𝜆2 = 1.0, 𝜆3 = 0.1 as the default 

weighting factor for our segmentation hybrid loss for 

the experiments throughout the study. 

 



TABLE S1. Comparison of the results of coarse segmentation network with different loss functions 

Loss Function DSC IOU Recall Precision 

GDL loss 89.50 82.12 91.37 89.57 

WCE loss 89.58 82.20 92.63 87.89 

GDL loss + WCE loss 90.44 83.60 93.13 89.50 

Our proposed loss 91.12 84.50 93.14 90.31 

 

TABLE S2. Quantitative metrics of the coarse segmentation network as a function of 𝜆3 (𝐿𝑜𝑠𝑠𝑟𝑎𝑛𝑘) 

Hyper-parameters set DSC IOU Recall Precision 

𝜆1 = 1.0, 𝜆2 = 1.0, 𝜆3 = 0.00 90.44 83.60 93.14 89.50 

𝜆1 = 1.0, 𝜆2 = 1.0, 𝜆3 = 0.05 90.76 84.09 93.71 89.34 

𝜆1 = 1.0, 𝜆2 = 1.0, 𝜆3 = 0.10 91.12 84.50 93.14 90.31 

𝜆1 = 1.0, 𝜆2 = 1.0, 𝜆3 = 0.15 90.58 83.84 93.24 89.59 

𝜆1 = 1.0, 𝜆2 = 1.0, 𝜆3 = 0.20 90.50 83.63 93.03 89.56 

𝜆1 = 1.0, 𝜆2 = 0.5, 𝜆3 = 0.10 90.39 83.81 93.47 89.31 

𝜆1 = 0.5, 𝜆2 = 1.0, 𝜆3 = 0.10 90.41 83.45 95.14 87.12 

Evaluation and choice of hyper-parameters of 

hybrid loss for classification  

As mentioned in section (Network optimizing and 

training) of the manuscript, our classification 

network utilizes a hybrid loss function that not only 

contains the cross-entropy loss of T2w and ADC 

images, but also an inconsistency loss to ensure 

consistency of CRMs derived from ADC and T2w 

images. Here, we investigate the optimal choice of 

hyper-parameters (weighting factors 𝜆1, 𝜆2, 𝜆3  in 

equation 7) that controls the contribution of the 

classification loss functions, and the normalized 

inconsistency loss function. Table S3 summarizes 

the metrics of the classification network as a 

function of 𝜆3   (normalized inconsistency loss) in 

the range from 0.00 to 1. Based on these results, we 

set 𝜆1 = 1.0, 𝜆2 = 1.0, 𝜆3 = 0.25  as the default 

weighting factor for our classification hybrid loss for 

the experiments throughout the study. 

 

TABLE S3. Quantitative metrics of the classification network as a function of 𝜆3 (inconsistency loss)  

Hyper-parameter set Precision Sensitivity Specificity AUC 

𝜆1 = 1.0, 𝜆2 = 1.0, 𝜆3 = 0.00 0.8085 0.9513 0.8718 0.9753 

𝜆1 = 1.0, 𝜆2 = 1.0, 𝜆3 = 0.15 0.8586 0.9711 0.9083 0.9887 

𝜆1 = 1.0, 𝜆2 = 1.0, 𝜆3 = 0.25 0.8963 0.9727 0.9356 0.9913 

𝜆1 = 1.0, 𝜆2 = 1.0, 𝜆3 = 0.50 0.8835 0.9519 0.9260 0.9895 

𝜆1 = 1.0, 𝜆2 = 1.0, 𝜆3 = 0.75 0.8546 0.9633 0.8953 0.9872 

𝜆1 = 1.0, 𝜆2 = 1.0, 𝜆3 = 1.00 0.8294 0.9927 0.8649 0.9845 

𝜆1 = 0.5, 𝜆2 = 1.0, 𝜆3 = 0.25 0.8043 0.9487 0.8732 0.9776 

𝜆1 = 1.0, 𝜆2 = 0.5, 𝜆3 = 0.25 0.8292 0.8717 0.9014 0.9750 

TABLE S4. The comparison results of coarse segmentation network with different loss functions 

Loss Function DSC IOU Recall Precision 

Dice loss 89.34 81.72 93.64 87.45 

Focal_tversky loss 88.54 81.07 93.09 86.62 

Focal loss 89.91 82.59 96.08 85.62 

IOU loss 89.37 82.31 92.16 88.97 

BCE + Dice loss 90.23 83.07 92.74 89.23 

Our proposed loss 91.12 84.50 93.14 90.31 



The ablation experiment  

The ablation experiment for classification with 

T1w images 

To evaluate T1 weighted image for classification, 

we performed the ablation experiment with or without 

T1 weighted image for classification, and the results 

are shown in Figure S12. Performance of classification 

is not improved with T1 weighted image (98.6% with 

T1w, T2w and ADC, and 99.1% with T2w and ADC). 

We think the reason for not increasing AUC with 

additional T1w may be due to T1w and T2w providing 

similar anatomical information. As reported in 

Prostate Imaging Reporting and Data System Version 

2.0 (PI-RADS 2.0) (a standardized PCa reporting 

system published in 2015 by the American College of 

Radiology), T2W and ADC from DWI are the two 

most recommended dominant sequences for Pca 

classification. Specifically, it pointed out that T2w 

which reflects the anatomy of a prostate is useful for 

delineating suspicious lesions because of their shorter 

“T2 relaxation time” compared with normal glandular 

tissue. And DWI which reflects the degree of water 

diffusion has low apparent diffusion coefficient (ADC) 

values in cancerous regions due to the tightly packed 

cells. Moreover, several studies have shown 

significant increases in both sensitivity and specificity 

by combining both ADC and T2w3-5. Thus, in this 

work, we also only utilized the ADC and T2w images. 

 
FIGURE S11. The ROC curves of the classification 

component for different input modes 

(ADC+T2w+T1w, ADC+T2w) 

 

The ablation experiment for classification with 

only T2w images or ADC images 

We compared the CRMobtained with only T2w or 

ADC in Figure S13. The CRM obtained with T2w is 

different from CRM obtained with ADC. We think 

that the CNN of classification sees’ not only PCa-

relevant patterns but also irrelevant visual patterns 

when distinguishing slices containing PCa from the 

normal ones. In addition, the irrelevant patterns are 

different for CNN ADC and CNN T2w, and in turn 

result in different CRMs5. To address this problem, we 

enforce the CNN models of ADC and T2w to generate 

consistent prediction labels and similar CRMs. As the 

irrelevant visual patterns learned from CNN ADC are 

different from those learned from CNN T2w while 

PCa-relevant patterns learned from both models are 

similar, the enforcement can greatly reduce the amount 

of irrelevant visual patterns without losing PCa-

relevant patterns.

 
FIGURE S12. Three exemplary pairs of ADC-T2w slices. The left image of each pair is a T2w and the right image 
of each pair is an ADC. (b) The cancer response maps of T2w and ADC based on single-modality CNN models. 
Clearly, the CRM of T2w is inconsistent with that of ADC. (c) The cancer response maps for T2w and ADC based 



on our co-trained CNN model. T2w and ADC together have much more consistent CRMs and the responses at 
cancerous regions are enhanced for both ADC and T2w compared to those based on a single-modality CNN. 
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