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Abstract

Prognosticating acute lung injury (ALI) is challenging, in part because of a lack of sen-
sitive biomarkers. Hyperpolarized gas magnetic resonance (MR) has unique advan-
tages in pulmonary function measurement and can provide promising biomarkers for
the assessment of lung injuries. Herein, we employ hyperpolarized *2?Xe MRI and
generate a number of imaging biomarkers to detect the pulmonary physiological and
morphological changes during the progression of ALl in an animal model. We find the
measured ratio of 12?Xe in red blood cells to interstitial tissue/plasma (RBC/TP) is sig-
nificantly lower in the ALl group on the second (0.32 + 0.03, p = 0.004), seventh
(0.23 £ 0.03, p < 0.001), and 14th (0.29 + 0.04, p = 0.001) day after lipopolysaccha-
ride treatment compared with that in the control group (0.41 + 0.04). In addition,
significant differences are also observed for RBC/TP measurements between the sec-
ond and seventh day (p = 0.001) and between the seventh and 14th day (p = 0.018)
in the ALI group after treatment. Besides RBC/TP, significant differences are also
observed in the measured exchange time constant (T) on the second (p = 0.038) and
seventh day (p = 0.009) and in the measured apparent diffusion coefficient (ADC)
and alveolar surface-to-volume ratio (SVR) on the 14th day (ADC: p = 0.009 and
SVR: p = 0.019) after treatment in the ALl group compared with that in the control
group. These findings indicate that the parameters measured with ??Xe MR can
detect the dynamic changes in pulmonary structure and function in an ALl animal

model.
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1 | INTRODUCTION

Acute lung injury (ALI) is a disorder of acute inflammation that can cause the disruption of pulmonary endothelial and epithelial barriers, inducing
acute hypoxic respiratory insufficiency.? Acute respiratory distress syndrome (ARDS) is the most severe form of ALl and it is also a major cause of
morbidity and mortality among the critically ill patient population.’? Almost 3 million people suffer from ARDS each year, and the mortality rate is
approximately 40%.3* Despite increasing efforts made in elucidating the pathophysiology of ARDS and the emergence of efficacious
treatments,>> prognostication remains challenging. Sensitive monitoring plays an important role in the management of patients with ARDS.®

ARDS is characterized by severe impairment of gas exchange. The severity of ARDS is defined by the ratio of arterial oxygen partial pressure
to fractional inspired oxygen (PaO,/FiO,), in which the PaO, is usually measured using arterial blood gas (ABG) analysis.” But, according to multi-
center data, the criteria might fail to provide a true risk assessment of patients.® Diffusing capacity for carbon monoxide (DLco), measured with
pulmonary function tests (PFTs), has been used for the evaluation of long-term gas exchange outcomes in patients with ARDS.” However, both
ABG and PFTs are unable to probe vasculature at the alveolar-capillary interface within the lung, although pulmonary vascular injury has long
been known to be a key pathological feature of ARDS.2° Chest computed tomography (CT) also plays an important role in the diagnosis and man-
agement of ARDS, because it can recognize ARDS by identifying pulmonary opacification.? However, CT can only image the pulmonary structure
with high resolution and cannot quantify the gas exchange function of the lungs directly because it cannot image the gas in the lung.

Hyperpolarized (HP) 2?Xe MR is regarded as a powerful tool for lung disease evaluation and diagnosis.*?>*® Combined with diffusion-weighted
imaging (DWI), it can quantify the lung morphology changes caused by various diseases, such as chronic obstructive pulmonary disease (COPD) and
idiopathic pulmonary fibrosis (IPF). Moreover, by using the technique of chemical shift saturation recovery (CSSR) MR spectroscopy (MRS), gas
exchange functional parameters at the alveolar-capillary interface can be obtained.!* 18 HP 12?Xe MR has been used to evaluate the impaired gas
exchange function caused by ALLY? However, this important technique has not yet been employed for evaluating the dynamic physiological changes
in the progression of ALI, especially the gas exchange function, which is critical for the treatment and management of ALI in the clinic.

Overall, sensitive dynamic assessment of gas exchange function at the alveolar-capillary interface is essential for the diagnosis and treatment
of ALI. Unfortunately, current clinical techniques can hardly offer such information. Here, we utilized HP *2?Xe MRI to evaluate the physiological
changes in the lung at different disease stages of ALl in an animal model.

2 | EXPERIMENTAL
2.1 | Ethical approval

All animal experimental protocols were approved by the Institutional Review Board and performed according to the national regulations for the

Administration of Affairs Concerning Experimental Animals.

2.2 | Animal preparation

A total of 20 male Sprague Dawley rats (weight: 200 + 20 g) were randomly divided into ALl (n = 15) and control groups (n = 5) after 7 days of
acclimatization. The rats were intratracheally instilled with 0.2 mL of lipopolysaccharide (LPS) (3 mg/mL) and an equivalent amount of normal
saline for the ALI and control groups,? respectively. The ALI group was further divided into three subgroups according to the period between the
treatment and experiments, that is, subgroup ALI D2 (n = 5), ALI D7 (n = 5), and ALI D14 (n = 5).

PFTs, HP 122Xe MR, and histological analysis were performed in sequence on the second day postnormal saline instillation for the control
group, and on the second, seventh, and 14th days post-LPS instillation for the subgroups ALI D2, ALI D7, and ALI D14, respectively.

2.3 | Pulmonary function tests

PFTs were performed on each rat using a forced maneuvers system (CRFM 100, EMMS, UK). Before the experiments, the rats were
tracheostomized after being anesthetized with pentobarbital sodium (35 mg/kg, intraperitoneal injection). Then a 14-G endotracheal tube was
inserted into the trachea and secured with surgical thread to prevent gas leakage, and no significant leakage was observed during the experiments.
Inspiratory capacity (IC), forced vital capacity (FVC), forced expiratory volume in 100 ms (FEV1q0), and quasi-static lung compliance (Cqs) were

obtained within 5 min.
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24 | 1%%Xe polarization and delivery

Isotopically enriched xenon gas (86% 2?Xe) was polarized via spin-exchange optical pumping using a commercial polarizer (verlmagin Healthcare,
Wuhan, China). HP xenon gas was cryogenically accumulated in a spiral-shaped cold trap?®?! and then thawed into a Tedlar bag. A total of
160 mL of HP *2%Xe was used for each rat. During the MR experiments, 2% isoflurane was used to maintain the anesthesia, and HP xenon gas
and oxygen were ventilated alternately to the rat lungs using a homebuilt MR-compatible gas delivery system via a homebuilt LabVIEW pro-
gram.?! The positive end-expiratory pressure (PEEP) was 5-cm H,0, and the tidal volume was 2 mL.2222 The airway pressure was monitored in

real time and was limited to less than 20-cm H,0.

2.5 | MR experiments

All the MR experiments were performed on a 7.0-T animal MRI scanner (Bruker BioSpec 70/20 USR, Germany) equipped with a homebuilt
129%e/*H dual-tuned birdcage coil. HP 2?Xe DWI and MRS were performed on each rat to obtain the morphological and physiological parame-
ters, respectively.

For HP 12?Xe DWI, a non-slice selection diffusion-weighted gradient-echo sequence was used. The acquisition parameters were as follows:
ramp-up/down time = 0.123 ms; constant time = 0.7 ms; diffusion time = 1.2 ms; matrix size = 64 x 64; field of view = 50 x 50 mm; flip
angle = 10°; bandwidth = 50 kHz, and TE = 3.52 ms. Nine b values (0, 4, 8, 12, 16, 20, 24, 28, and 32 s/cm?) were used for extracting the mor-
phological parameters. For images with nonzero b values, three images with and without diffusion gradient (0, b, 0 s/cm?) were acquired using an
interleaved sampling strategy in a single breath-hold, as described in previous studies.?%24

For HP 2?Xe MRS, a CSSR pulse sequence was used, as previously described.?? Briefly, two Gaussian-shaped pulses with durations of 0.5
and 0.2 ms were used to saturate and excite the dissolved *2?Xe signals, with off-resonance effects of 0.1° and 0.9° on gas-phase *2?Xe, respec-
tively. Spectra were acquired with a bandwidth of 25 kHz and 1024 sampling points, and 24 exchange time points ranging from 2 to 400 ms were
used. All spectra were repeatedly measured three times, and each measurement was performed within a single breath-hold after two xenon
flushes.

2.6 | Dataprocessing

All the data were processed in Matlab software (MathWorks, Natick, MA, USA). The raw data of HP 2?Xe DWI were reconstructed into images
by two-dimensional Fourier transform. For the three images acquired within the same breath-hold, two images without diffusion weight were
averaged and then were used to generate the binary mask to segment the image with diffusion weight. After that, pixels with a signal-to-noise
ratio of less than 3 were excluded, and the main tracheal was removed by the seed-growing algorithm.?* Next, images with b = 0 and 12 s/cm?
were used to calculate the apparent diffusion coefficient (ADC) map using the monoexponential model, and images with b = 0-32 s/cm? were
used to fit with a diffusion model to extract the morphological parameters,?® including the alveolar surface-to-volume ratio (SVR) and alveolar
mean chord length (Lm).

For HP 12?Xe MRS, spectra were fitted to the Lorentzian shape to extract the signal amplitudes of *2?Xe in interstitial tissue/plasma (TP), red
blood cells (RBC), and the gas phase, respectively. Signal amplitudes of TP and RBC were first normalized by the gas phase signal then fitted to

2021 including the exchange time constant (T), septal wall thickness

the model of xenon exchange (MOXE) to extract the physiological parameters,
(d), and blood hematocrit (Hct).2® In addition, signal amplitudes of RBC, TP, and gas phase in spectra with an exchange time of 100 ms were used

to obtain the ratios of RBC/Gas, TP/Gas, and RBC/TP.2%-2

2.7 | Quantitative histology

After the experiments, the lung was extracted immediately after the rats were euthanized. The extracted lungs were instilled with 4% paraformal-
dehyde with a pressure of 25-cm H,O for more than 2 h then kept in the same solution for 48 h. Paraffin-embedded lung was cut into 5-um-thick
tissue sections then stained with hematoxylin and eosin (H&E) and Masson's trichrome (for assessing the fibrosis). Images that did not contain the
large airway were acquired with a microscope (Nikon Eclipse TS100, Japan) for each section.?* The alveolar septal thickness was calculated auto-
matically using a homebuilt Matlab program. A standard test grid was then overlaid on the images, and the septal thickness was determined as the

average of the total truncated length.2”2®
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2.8 | Statistical analysis

Unpaired t-tests were used to compare the parameters measured with PFTs, 2?Xe MR, and quantitative histology for the control and ALI groups
and for ALl subgroups. Moreover, the Pearson correlation coefficient (r) was used to determine the relationship between septal wall thickness
measured with HP 22Xe MRS and quantitative histology. All the statistical analyses were performed using PASW Statistics 18 (SPSS, Chicago, IL,
USA). p values less than 0.05 were considered statistically significant.

3 | RESULTS

3.1 | Pulmonary function tests

Significant differences were found in measured IC, FVC, and C,4s between subgroup ALl D14 and the control group (IC: p = 0.044; FVC:
p = 0.022; Cy: p = 0.029). IC and FVC also showed significances between subgroups ALI D14 and ALI D7 (IC: p = 0.009; FVC: p = 0.022). More-
over, FEV 100 was higher in subgroup ALl D14 than in subgroup ALl D7 with significance (p = 0.008). However, no significant differences were
observed in the measured PFT parameters between the control group and subgroup ALI D2, the control group and subgroup ALI D7, and sub-
groups ALI D2 and ALI D7, as shown in Table 1.

3.2 | Hyperpolarized 1?°Xe DWI

Figure 1 shows representative ADC and morphological maps from the control and ALI groups. Substantially higher ADC, Lm, and lower SVR can
be observed in subgroup ALI D14 versus the control group; quantitative results of the measured morphological parameters from all groups are

TABLE 1 Summary of the physiological and morphological parameters measured with PFTs, hyperpolarized 12?Xe DWI, and MRS.

ALl Statistics

Ctrl.vs.  Ctrl. vs. Ctrl. vs. D2 vs. D7 vs.

Parameters Ctrl. D2 D7 D14 D2 D7 D14 D7 D14
PFTs
IC (mL) 8.52(1.36) 6.53(2.53) 6.72(2.15) 10.52 (1.30) 0.160 0.151 0.044*  0.905 0.009*
FVC (mL) 10.40 (1.28) 8.36 (2.61) 8.74 (2.89) 12.84 (1.43) 0.155 0.273 0.022* 0.835 0.022*
FEV100 (mL) 4.03(0.99) 3.44 (0.62) 2.95(0.77) 4.23(0.28) 0.297 0.090 0.669 0.291 0.008*
Cgs (mL/cm H,0) 0.90(0.19) 0.79 (0.31) 0.85(0.28) 1.14 (0.08) 0.512 0.776 0.029*  0.725 0.056
DWI
ADC (cm?/s) 0.0354 (0.0016)  0.0364 (0.0019)  0.0358 (0.0030)  0.0404 (0.0028)  0.422 0.821 0.009* 0.719 0.038*
Lm (um) 95(8) 99 (7) 97 (13) 108 (8) 0.444 0.797 0.031* 0.779 0.154
SVR (cm™) 441 (35) 420 (35) 434 (58) 382 (27) 0.382 0.816 0.019*  0.679 0.126
MRS
T (ms) 21.44 (3.35) 33.30(10.18) 30.57 (4.35) 24.49 (5.65) 0.038* 0.006* 0.330 0.596 0.093
d (um) 8.34 (0.66) 10.32 (1.54) 9.96 (0.69) 8.88(1.02) 0.029* 0.005* 0.345 0.643 0.088
Hct 0.26 (0.02) 0.21 (0.01) 0.17 (0.02) 0.19 (0.02) 0.006* <0.001* 0.002*  0.002* 0.117
RBC/gas (x107?) 0.60 (0.05) 0.54 (0.09) 0.45(0.13) 0.43 (0.03) 0.239 0.041* <0.001* 0234 0.646
TP/gas (x107?) 1.49 (0.13) 1.68 (0.21) 1.98(0.41) 1.48(0.12) 0.131 0.035* 0.950 0.184 0.032*
RBC/TP 0.41 (0.04) 0.32(0.03) 0.23(0.03) 0.29 (0.04) 0.004* <0.001* 0.001 0.001*  0.018*

Notes: Unless otherwise indicated, data are presented as the mean (standard deviation). The p values were calculated between the four groups with significant
differences in bold.

Abbreviations: ADC, apparent diffusion coefficient; ALI, acute lung injury; Cqs, quasi-static lung compliance; Ctrl., control group; d, septal wall thickness; D14,

14 days after instillation; D2, 2 days after instillation; D7, 7 days after instillation; DWI, diffusion-weighted imaging; FEV 100, forced expiratory volume in 100 ms;
FVC, forced vital capacity; Hct, blood hematocrit; IC, inspiratory capacity; Lm, alveolar mean chord length; MRS, magnetic resonance spectroscopy; PFTs,
pulmonary function tests; RBC, red blood cells; SVR, alveolar surface-to-volume ratio; T, exchange time constant; TP, interstitial tissue/plasma.

*Unpaired t-test, p < 0.05.
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FIGURE 1 Representative ADC, Lm, and SVR maps from the control group and subgroups ALl D2, ALI D7, and ALl D14. Higher ADC, Lm,
and lower SVR can be observed in subgroup ALI D14 compared with the control group. ADC, apparent diffusion coefficient; ALI, acute lung
injury; D14, 14 days after instillation; D2, 2 days after instillation; D7, 7 days after instillation; Lm, alveolar mean chord length; SVR, alveolar
surface-to-volume ratio.

summarized in Table 1. ADC, Lm, and SVR showed significances between the control group and subgroup ALI D14 (ADC: p = 0.009, Lm:
p = 0.031 and SVR: p = 0.019).

3.3 | Hyperpolarized 1??Xe MRS

Figure 2 shows the representative dissolved xenon recovery curves measured from each group. Dissolved xenon signals obviously recovered
more slowly in subgroup ALI D7, wherein the normalized TP signal was significantly higher compared with that in the control group. Moreover,
xenon signal recovery curves in subgroup ALI D14 were similar to those in the control group.

Figure 3 shows the comparisons of the physiological parameters derived with HP 2?Xe MRS among the groups. Significant differences were
observed in the measured T, d, and Hct between subgroup ALl D2 and the control group (T: p = 0.038; d: p = 0.029; Hct: p = 0.006), and sub-
group ALl D7 and the control group (T: p = 0.006; d: p = 0.005; Hct: p < 0.001). Moreover, significant differences were also observed in Hct
between the control group and subgroup ALl D14 (p = 0.002) and between the subgroups ALl D2 and ALI D7 (p = 0.002). In addition, the
highest T and d measurements were found in subgroup ALI D2, and the lowest Hct was observed in subgroup ALI D7.

Figure 4 shows the comparisons of the dissolved signals at the exchange time of 100 ms among the groups. RBC/TP showed significant dif-
ferences between the control group and subgroup ALI D2 (p = 0.004), the control group and subgroup ALI D7 (p < 0.001), the control group and
subgroup ALI D14 (p = 0.001), subgroups ALI D2 and ALI D7 (p = 0.001), and subgroups ALI D7 and ALI D14 (p = 0.018). Moreover, significant
differences were observed in RBC/gas between the control group and subgroup ALI D7 (p = 0.041) and the control group and subgroup ALl D14
(p < 0.001). Significant differences were also observed in TP/gas between the control group and subgroup ALI D7 (p = 0.035) and subgroups ALI
D7 and ALI D14 (p = 0.032). After being treated with LPS, RBC/gas decreased with time, TP/gas increased first and then decreased, and RBC/TP
decreased first and then increased. In addition, the highest TP/gas and lowest RBC/TP were observed in subgroup ALl D7. The results are also

summarized in Table 1.

3.4 | Histological observations

Figure 5 shows the representative histological sections from all groups, and the collagen deposition was stained in blue in Masson's trichrome sta-
ined images. Severe neutrophil infiltration can be observed in subgroup ALI D2, and thickened septal wall thickness and collagen deposition that
spreads throughout the lung can be observed in subgroup ALI D7, indicating pulmonary fibrosis. Moreover, collagen deposition and enlarged alve-
olar sizes were observed in subgroup ALI D14, although neutrophil infiltration and thickened septal wall were not observed. The septal wall thick-
ness measured with histology was 5.91 + 0.38, 8.26 + 1.13, 8.12 + 0.43, and 6.76 + 0.74 um for the control group and subgroups ALI D2, ALI D7,
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FIGURE 2 Typical dissolved xenon signal recovery curves for each group. Compared with the control group (A), the recovery of RBC and TP
129%e signal was slower in subgroup ALI D2 (B). Of all the groups, the recovery of dissolved xenon signal was slowest in subgroup ALI D7 (C), and
the TP signal was obviously higher than that in the other groups. Subgroup ALI D14 (D) has similar dissolved xenon signal recovery curves as
those in the control group. Each point on the curves is an average of three separate experiments. AL, acute lung injury; D14, 14 days after
instillation; D2, 2 days after instillation; D7, 7 days after instillation; RBC, red blood cells; TP, interstitial tissue/plasma.
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FIGURE 3 Comparisons of the physiological parameters derived with 12?Xe MRS among the groups. Compared with the control group, both
the exchange time constant (A) and septal wall thickness (B) increased first and then decreased after the rats were treated with LPS. On the
contrary, blood hematocrit (C) decreased first and then increased. ALI, acute lung injury; D14, 14 days after instillation; D2, 2 days after
instillation; D7, 7 days after instillation; LPS, lipopolysaccharide.
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FIGURE 4 Comparisons of RBC/gas, TP/gas, and RBC/TP among the groups. Compared with the control group, RBC/gas decreased with the
progression of ALI, and TP/gas increased first and then decreased. Moreover, RBC/TP decreased first and then increased after the rats were
treated with LPS. RBC/TP showed significant differences between the groups. ALI, acute lung injury; D14, 14 days after instillation; D2, 2 days

after instillation; D7, 7 days after instillation; LPS, lipopolysaccharide; RBC, red blood cells; TP, interstitial tissue/plasma.
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FIGURE 5 H&E and Masson's trichrome stained histological images of the representative rats from the control and ALI groups (scale

bar = 50 um). Compared with the control group, the inflammation (red arrows in the H&E-stained image) and alveolar disruption can be observed
in subgroup ALI D2, and obvious thickening of the septal wall and obvious collagen deposition can be observed in subgroup ALI D7. In subgroup
ALI D14, the enlarged alveolar and collagen deposition can be observed, although the inflammation and thickened septal wall were resolved. AL,
acute lung injury; D14, 14 days after instillation; D2, 2 days after instillation; D7, 7 days after instillation; H&E, hematoxylin and eosin.

and ALI D14, respectively. Significant differences were observed between the control group and subgroup ALI D2 (p = 0.007) and the control
group and subgroup ALI D7 (p < 0.001). Moreover, the measured septal wall thickness showed a good correlation with that using quantitative his-

tology, as shown in Figure 6.

4 | DISCUSSION

In this study, the physiological changes in an animal model of ALl were dynamically assessed using HP 12?Xe MR, and promising biomarkers were
proposed. Our preliminary results showed that pulmonary function deteriorated first and then recovered in the ALl group after LPS treatment,
and that the ratio of 2?Xe in red blood cells to interstitial tissue/plasma (i.e., RBC/TP) may serve as a promising biomarker for quantifying the
physiological changes during the progression of ALl in the animal model. Moreover, the measurements of the gas exchange time constant (T) and

ADC were sensitive to the short- and long-term outcomes of ALI, respectively. These findings showed that, using an animal model of ALI,

a ‘v ‘v202 'Z6rT660T

royysdny wouy

feur

0//SdRY) SUORIPUOD PUe SWB L U3 88S *[7202/E0/ST] U0 ARIqITBUIIUO ABIIM ‘UL B 19S JO AISBAIN BuoyzenH Aq 8,05 WAU/Z00T OT/I0P/L0D A3 Arelq1pul

PUeR-SWLBI WO A3 IM A

3SUD|T SUOWIWOD aAIEaID 3(qedi|dde ayy Ag pausanoh afe saoite YO ‘ash Jo sajni 10} Akeid)T auljuQ 8|1\ Uo (suonipt



m _NMR ZHANG ET AL.
WILEY—|\BiOMEDICINE

Mr

Vv Control
Vv ALID2
v ALID7
Vv ALID14
—_— Fit

-
o

©

~

Histology: septal thickness (um)
D oo

5 1 1 1 1 1
7 8 9 10 1" 12 13

Hyperpolarized Xe MRS: septal thickness (um)

FIGURE 6 Correlation of the septal thickness derived by 12?Xe MRS and quantitative histology (p < 0.001, r = 0.928). The solid line is the
linear fit of the two methods. ALl acute lung injury; D14, 14 days after instillation; D2, 2 days after instillation; D7, 7 days after instillation; MRS,
magnetic resonance spectroscopy.

functional and structural changes in the lung can be dynamically detected and quantified by HP *2?Xe MR with high sensitivity without ionizing
radiation.

RBC/TP showed high sensitivity in the dynamic assessment of lung physiology in an ALI animal model. As a widely used 2?Xe MR biomarker,
RBC/TP has been used for quantifying changes in gas exchange function caused by lung diseases, such as COPD, IPF, and COVID-19.182%:30 |
this study, we found that RBC/TP decreased first and then increased in the ALI group, and the same trend was also observed in PFT measure-
ments. However, no statistical significance was found in PFTs measurements in the short term for the ALl animal model. In addition, changes in
RBC/TP were also consistent with the histological results, which indicated acute inflammation on the second day and fibrosis on the seventh day

after LPS treatment?12?

and substantially resolved inflammation on the 14th day.

Exchange time constant (T) measured with 12?Xe MRS was a potentially sensitive biomarker for detecting the short-term abnormalities of
the alveolar-capillary membrane in an ALl animal model. The measured T substantially increased in the ALI group on the second and seventh
day after LPS treatment compared with the control group. These findings were similar to those reported from previous studies.?3%32 This
may be because of the exudation and infiltration of polymorphonuclear neutrophils in lungs on the second day after LPS treatment,>® which
would make it difficult for xenon to enter into the capillary.22! Then, on the seventh day, secondary fibrosis after the acute inflammation®3
would thicken the alveolar septal wall and reduce the gas exchange efficiency. On the 14th day after treatment, the measured T decreased in

d®13* and the reduced septal wall thickness made it easier for xenon to

the ALl group, probably because the acute inflammation was resolve
pass through.

ABG analysis and the DLco measure are widely used for assessing the lung gas exchange. ABG analysis can be used for assessing the severity
of ARDS,” although ABG analysis is invasive, and arteries' blood is needed for obtaining the PaO,/FiO ratio. Meanwhile, it can only measure the
partial pressure of oxygen and carbon dioxide and cannot measure the gas exchange in the lung directly. DLco measures the differences of carbon
monoxide concentration between the gas mixture inhaled and exhaled by the patient. It can assess the ability of the lung to transfer gas from
inspired air to the bloodstream, but it cannot probe the vasculature at the alveolar-capillary interface.>®> Compared with these methods, 1??Xe
MR allows direct assessment of the lung gas exchange function by analyzing 12°Xe signal in alveolar, TP, and capillary RBC. The derived parame-
ters from CSSR, such as hematocrit and RBC/gas ratio, can be used for evaluating the gas exchange function at the alveolar-capillary interface,
which can hardly be obtained using clinical methods without invasion.>>3¢

ADC and morphological parameters measured with 12?Xe DWI suggest the potential of HP *2?Xe MRI for assessing the long-term alveolar
structural changes in ALI. The increased ADC and Lm and decreased SVR on the 14th day after LPS treatment suggested the increase of the alve-
olar sizes and agreed with the results of PFTs and histological analysis. These emphysema-like injuries were similar to those reported in previous
studies.®1372® No significant differences were observed in the measured ADC and morphological parameters on the second and seventh day after
LPS treatment compared with the control group. This was probably because of the simultaneous existence of acute inflammation and
emphysema-like changes. The inflammation would lead to a decrease in the alveolar size,>” but emphysema-like changes would cause an increase

in the alveolar size.®®
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To investigate the progression of ALI, the lung injury model was induced by intratracheal instillation of LPS in our study. As one of the most
widely used rodent models of acute lung inflammation, the responses of the lungs to injury would change with time in the short-term effect of
LPS,*° while for the long-term effect of LPS, some studies have shown that the inflammation would be resolved and the lung could recover
from injury.3%** Such characteristics are similar to the reparative processes of ALl in humans.3* To depict the dynamic development of AL, dif-
ferent rats were used for each time point. A similar design has also been commonly used in animal experiments for studying the disease
process.3141

Our research can be extended in several ways. Endotracheal intubation with tracheostomy was used in this study, and rats would be eutha-
nized after examinations, which hinders the longitudinal study on the same rats. Instead, we used five different rats from the ALl group at dif-
ferent times post-LPS instillation, a strategy widely used in animal studies for assessing progression.>**? Next, three time points were chosen
after the rats were treated with LPS according to the previous study®!; however, these time points may not fully depict the development of
ALI, and more time points are needed for a comprehensive understanding of LPS-induced ALI. Furthermore, the gas exchange function was
measured globally with MRS in this study, and local assessment of the gas exchange function should also be included in future studies. Given
the potential alveolar collapse in the ALl model, a meticulous ADC protocol that incorporates PEEP and recruitment maneuver may be
employed in future studies to minimize the biases in ADC measurements. Lastly, although dynamic changes in lung physiological function were
observed through 2?Xe MR in the ALI animal model, further studies are needed to determine the applicability of this technique for evaluating
ALl in the clinic. On the one hand, whether the observed lung physiological changes are unique to ALl warrants further investigation. On the
other hand, the applications of *2?Xe MRI for the assessment of critically ill patients in the clinic remains a challenge, particularly for those
patients requiring mechanical ventilation who cannot leave the intensive care unit, and customized hardware and pulse sequences tailored to
these patients are needed.

5 | CONCLUSIONS

In summary, we employed HP 2?Xe MR to evaluate the progression of lung structural and functional changes in vivo in an animal model of ALI
induced by LPS. Our results showed that RBC/TP can sensitively and dynamically assess the gas exchange function changes, T can assess the
short-term functional changes, and ADC can assess the long-term alveolar structural changes. These findings may support the use of HP 12?Xe

MR in future clinical studies of ALI.
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