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Abstract

Prognosticating acute lung injury (ALI) is challenging, in part because of a lack of sen-

sitive biomarkers. Hyperpolarized gas magnetic resonance (MR) has unique advan-

tages in pulmonary function measurement and can provide promising biomarkers for

the assessment of lung injuries. Herein, we employ hyperpolarized 129Xe MRI and

generate a number of imaging biomarkers to detect the pulmonary physiological and

morphological changes during the progression of ALI in an animal model. We find the

measured ratio of 129Xe in red blood cells to interstitial tissue/plasma (RBC/TP) is sig-

nificantly lower in the ALI group on the second (0.32 ± 0.03, p = 0.004), seventh

(0.23 ± 0.03, p < 0.001), and 14th (0.29 ± 0.04, p = 0.001) day after lipopolysaccha-

ride treatment compared with that in the control group (0.41 ± 0.04). In addition,

significant differences are also observed for RBC/TP measurements between the sec-

ond and seventh day (p = 0.001) and between the seventh and 14th day (p = 0.018)

in the ALI group after treatment. Besides RBC/TP, significant differences are also

observed in the measured exchange time constant (T) on the second (p = 0.038) and

seventh day (p = 0.009) and in the measured apparent diffusion coefficient (ADC)

and alveolar surface-to-volume ratio (SVR) on the 14th day (ADC: p = 0.009 and

SVR: p = 0.019) after treatment in the ALI group compared with that in the control

group. These findings indicate that the parameters measured with 129Xe MR can

detect the dynamic changes in pulmonary structure and function in an ALI animal

model.
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1 | INTRODUCTION

Acute lung injury (ALI) is a disorder of acute inflammation that can cause the disruption of pulmonary endothelial and epithelial barriers, inducing

acute hypoxic respiratory insufficiency.1 Acute respiratory distress syndrome (ARDS) is the most severe form of ALI and it is also a major cause of

morbidity and mortality among the critically ill patient population.1,2 Almost 3 million people suffer from ARDS each year, and the mortality rate is

approximately 40%.3,4 Despite increasing efforts made in elucidating the pathophysiology of ARDS and the emergence of efficacious

treatments,3,5 prognostication remains challenging. Sensitive monitoring plays an important role in the management of patients with ARDS.6

ARDS is characterized by severe impairment of gas exchange. The severity of ARDS is defined by the ratio of arterial oxygen partial pressure

to fractional inspired oxygen (PaO2/FiO2), in which the PaO2 is usually measured using arterial blood gas (ABG) analysis.7 But, according to multi-

center data, the criteria might fail to provide a true risk assessment of patients.8 Diffusing capacity for carbon monoxide (DLCO), measured with

pulmonary function tests (PFTs), has been used for the evaluation of long-term gas exchange outcomes in patients with ARDS.9 However, both

ABG and PFTs are unable to probe vasculature at the alveolar–capillary interface within the lung, although pulmonary vascular injury has long

been known to be a key pathological feature of ARDS.10 Chest computed tomography (CT) also plays an important role in the diagnosis and man-

agement of ARDS, because it can recognize ARDS by identifying pulmonary opacification.11 However, CT can only image the pulmonary structure

with high resolution and cannot quantify the gas exchange function of the lungs directly because it cannot image the gas in the lung.

Hyperpolarized (HP) 129Xe MR is regarded as a powerful tool for lung disease evaluation and diagnosis.12,13 Combined with diffusion-weighted

imaging (DWI), it can quantify the lung morphology changes caused by various diseases, such as chronic obstructive pulmonary disease (COPD) and

idiopathic pulmonary fibrosis (IPF). Moreover, by using the technique of chemical shift saturation recovery (CSSR) MR spectroscopy (MRS), gas

exchange functional parameters at the alveolar–capillary interface can be obtained.14–18 HP 129Xe MR has been used to evaluate the impaired gas

exchange function caused by ALI.19 However, this important technique has not yet been employed for evaluating the dynamic physiological changes

in the progression of ALI, especially the gas exchange function, which is critical for the treatment and management of ALI in the clinic.

Overall, sensitive dynamic assessment of gas exchange function at the alveolar–capillary interface is essential for the diagnosis and treatment

of ALI. Unfortunately, current clinical techniques can hardly offer such information. Here, we utilized HP 129Xe MRI to evaluate the physiological

changes in the lung at different disease stages of ALI in an animal model.

2 | EXPERIMENTAL

2.1 | Ethical approval

All animal experimental protocols were approved by the Institutional Review Board and performed according to the national regulations for the

Administration of Affairs Concerning Experimental Animals.

2.2 | Animal preparation

A total of 20 male Sprague Dawley rats (weight: 200 ± 20 g) were randomly divided into ALI (n = 15) and control groups (n = 5) after 7 days of

acclimatization. The rats were intratracheally instilled with 0.2 mL of lipopolysaccharide (LPS) (3 mg/mL) and an equivalent amount of normal

saline for the ALI and control groups,19 respectively. The ALI group was further divided into three subgroups according to the period between the

treatment and experiments, that is, subgroup ALI D2 (n = 5), ALI D7 (n = 5), and ALI D14 (n = 5).

PFTs, HP 129Xe MR, and histological analysis were performed in sequence on the second day postnormal saline instillation for the control

group, and on the second, seventh, and 14th days post-LPS instillation for the subgroups ALI D2, ALI D7, and ALI D14, respectively.

2.3 | Pulmonary function tests

PFTs were performed on each rat using a forced maneuvers system (CRFM 100, EMMS, UK). Before the experiments, the rats were

tracheostomized after being anesthetized with pentobarbital sodium (35 mg/kg, intraperitoneal injection). Then a 14-G endotracheal tube was

inserted into the trachea and secured with surgical thread to prevent gas leakage, and no significant leakage was observed during the experiments.

Inspiratory capacity (IC), forced vital capacity (FVC), forced expiratory volume in 100 ms (FEV100), and quasi-static lung compliance (Cqs) were

obtained within 5 min.

2 of 11 ZHANG ET AL.

 10991492, 2024, 4, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/nbm

.5078 by H
uazhong U

niversity O
f Sci &

 T
ech, W

iley O
nline L

ibrary on [15/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2.4 | 129Xe polarization and delivery

Isotopically enriched xenon gas (86% 129Xe) was polarized via spin-exchange optical pumping using a commercial polarizer (verImagin Healthcare,

Wuhan, China). HP xenon gas was cryogenically accumulated in a spiral-shaped cold trap20,21 and then thawed into a Tedlar bag. A total of

160 mL of HP 129Xe was used for each rat. During the MR experiments, 2% isoflurane was used to maintain the anesthesia, and HP xenon gas

and oxygen were ventilated alternately to the rat lungs using a homebuilt MR-compatible gas delivery system via a homebuilt LabVIEW pro-

gram.21 The positive end-expiratory pressure (PEEP) was 5-cm H2O, and the tidal volume was 2 mL.22,23 The airway pressure was monitored in

real time and was limited to less than 20-cm H2O.

2.5 | MR experiments

All the MR experiments were performed on a 7.0-T animal MRI scanner (Bruker BioSpec 70/20 USR, Germany) equipped with a homebuilt
129Xe/1H dual-tuned birdcage coil. HP 129Xe DWI and MRS were performed on each rat to obtain the morphological and physiological parame-

ters, respectively.

For HP 129Xe DWI, a non-slice selection diffusion-weighted gradient-echo sequence was used. The acquisition parameters were as follows:

ramp-up/down time = 0.123 ms; constant time = 0.7 ms; diffusion time = 1.2 ms; matrix size = 64 � 64; field of view = 50 � 50 mm; flip

angle = 10�; bandwidth = 50 kHz, and TE = 3.52 ms. Nine b values (0, 4, 8, 12, 16, 20, 24, 28, and 32 s/cm2) were used for extracting the mor-

phological parameters. For images with nonzero b values, three images with and without diffusion gradient (0, b, 0 s/cm2) were acquired using an

interleaved sampling strategy in a single breath-hold, as described in previous studies.21,24

For HP 129Xe MRS, a CSSR pulse sequence was used, as previously described.21 Briefly, two Gaussian-shaped pulses with durations of 0.5

and 0.2 ms were used to saturate and excite the dissolved 129Xe signals, with off-resonance effects of 0.1� and 0.9� on gas-phase 129Xe, respec-

tively. Spectra were acquired with a bandwidth of 25 kHz and 1024 sampling points, and 24 exchange time points ranging from 2 to 400 ms were

used. All spectra were repeatedly measured three times, and each measurement was performed within a single breath-hold after two xenon

flushes.

2.6 | Data processing

All the data were processed in Matlab software (MathWorks, Natick, MA, USA). The raw data of HP 129Xe DWI were reconstructed into images

by two-dimensional Fourier transform. For the three images acquired within the same breath-hold, two images without diffusion weight were

averaged and then were used to generate the binary mask to segment the image with diffusion weight. After that, pixels with a signal-to-noise

ratio of less than 3 were excluded, and the main tracheal was removed by the seed-growing algorithm.24 Next, images with b = 0 and 12 s/cm2

were used to calculate the apparent diffusion coefficient (ADC) map using the monoexponential model, and images with b = 0–32 s/cm2 were

used to fit with a diffusion model to extract the morphological parameters,25 including the alveolar surface-to-volume ratio (SVR) and alveolar

mean chord length (Lm).

For HP 129Xe MRS, spectra were fitted to the Lorentzian shape to extract the signal amplitudes of 129Xe in interstitial tissue/plasma (TP), red

blood cells (RBC), and the gas phase, respectively. Signal amplitudes of TP and RBC were first normalized by the gas phase signal then fitted to

the model of xenon exchange (MOXE) to extract the physiological parameters,20,21 including the exchange time constant (T), septal wall thickness

(d), and blood hematocrit (Hct).26 In addition, signal amplitudes of RBC, TP, and gas phase in spectra with an exchange time of 100 ms were used

to obtain the ratios of RBC/Gas, TP/Gas, and RBC/TP.20,21

2.7 | Quantitative histology

After the experiments, the lung was extracted immediately after the rats were euthanized. The extracted lungs were instilled with 4% paraformal-

dehyde with a pressure of 25-cm H2O for more than 2 h then kept in the same solution for 48 h. Paraffin-embedded lung was cut into 5-μm-thick

tissue sections then stained with hematoxylin and eosin (H&E) and Masson's trichrome (for assessing the fibrosis). Images that did not contain the

large airway were acquired with a microscope (Nikon Eclipse TS100, Japan) for each section.24 The alveolar septal thickness was calculated auto-

matically using a homebuilt Matlab program. A standard test grid was then overlaid on the images, and the septal thickness was determined as the

average of the total truncated length.27,28
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2.8 | Statistical analysis

Unpaired t-tests were used to compare the parameters measured with PFTs, 129Xe MR, and quantitative histology for the control and ALI groups

and for ALI subgroups. Moreover, the Pearson correlation coefficient (r) was used to determine the relationship between septal wall thickness

measured with HP 129Xe MRS and quantitative histology. All the statistical analyses were performed using PASW Statistics 18 (SPSS, Chicago, IL,

USA). p values less than 0.05 were considered statistically significant.

3 | RESULTS

3.1 | Pulmonary function tests

Significant differences were found in measured IC, FVC, and Cqs between subgroup ALI D14 and the control group (IC: p = 0.044; FVC:

p = 0.022; Cqs: p = 0.029). IC and FVC also showed significances between subgroups ALI D14 and ALI D7 (IC: p = 0.009; FVC: p = 0.022). More-

over, FEV100 was higher in subgroup ALI D14 than in subgroup ALI D7 with significance (p = 0.008). However, no significant differences were

observed in the measured PFT parameters between the control group and subgroup ALI D2, the control group and subgroup ALI D7, and sub-

groups ALI D2 and ALI D7, as shown in Table 1.

3.2 | Hyperpolarized 129Xe DWI

Figure 1 shows representative ADC and morphological maps from the control and ALI groups. Substantially higher ADC, Lm, and lower SVR can

be observed in subgroup ALI D14 versus the control group; quantitative results of the measured morphological parameters from all groups are

TABLE 1 Summary of the physiological and morphological parameters measured with PFTs, hyperpolarized 129Xe DWI, and MRS.

Parameters Ctrl.

ALI Statistics

D2 D7 D14

Ctrl. vs.

D2

Ctrl. vs.

D7

Ctrl. vs.

D14

D2 vs.

D7

D7 vs.

D14

PFTs

IC (mL) 8.52 (1.36) 6.53 (2.53) 6.72 (2.15) 10.52 (1.30) 0.160 0.151 0.044* 0.905 0.009*

FVC (mL) 10.40 (1.28) 8.36 (2.61) 8.74 (2.89) 12.84 (1.43) 0.155 0.273 0.022* 0.835 0.022*

FEV100 (mL) 4.03 (0.99) 3.44 (0.62) 2.95 (0.77) 4.23 (0.28) 0.297 0.090 0.669 0.291 0.008*

Cqs (mL/cm H2O) 0.90 (0.19) 0.79 (0.31) 0.85 (0.28) 1.14 (0.08) 0.512 0.776 0.029* 0.725 0.056

DWI

ADC (cm2/s) 0.0354 (0.0016) 0.0364 (0.0019) 0.0358 (0.0030) 0.0404 (0.0028) 0.422 0.821 0.009* 0.719 0.038*

Lm (μm) 95 (8) 99 (7) 97 (13) 108 (8) 0.444 0.797 0.031* 0.779 0.154

SVR (cm�1) 441 (35) 420 (35) 434 (58) 382 (27) 0.382 0.816 0.019* 0.679 0.126

MRS

T (ms) 21.44 (3.35) 33.30 (10.18) 30.57 (4.35) 24.49 (5.65) 0.038* 0.006* 0.330 0.596 0.093

d (μm) 8.34 (0.66) 10.32 (1.54) 9.96 (0.69) 8.88 (1.02) 0.029* 0.005* 0.345 0.643 0.088

Hct 0.26 (0.02) 0.21 (0.01) 0.17 (0.02) 0.19 (0.02) 0.006* < 0.001* 0.002* 0.002* 0.117

RBC/gas (�10�2) 0.60 (0.05) 0.54 (0.09) 0.45 (0.13) 0.43 (0.03) 0.239 0.041* < 0.001* 0.234 0.646

TP/gas (�10�2) 1.49 (0.13) 1.68 (0.21) 1.98 (0.41) 1.48 (0.12) 0.131 0.035* 0.950 0.184 0.032*

RBC/TP 0.41 (0.04) 0.32 (0.03) 0.23 (0.03) 0.29 (0.04) 0.004* < 0.001* 0.001 0.001* 0.018*

Notes: Unless otherwise indicated, data are presented as the mean (standard deviation). The p values were calculated between the four groups with significant

differences in bold.

Abbreviations: ADC, apparent diffusion coefficient; ALI, acute lung injury; Cqs, quasi-static lung compliance; Ctrl., control group; d, septal wall thickness; D14,

14 days after instillation; D2, 2 days after instillation; D7, 7 days after instillation; DWI, diffusion-weighted imaging; FEV100, forced expiratory volume in 100 ms;

FVC, forced vital capacity; Hct, blood hematocrit; IC, inspiratory capacity; Lm, alveolar mean chord length; MRS, magnetic resonance spectroscopy; PFTs,

pulmonary function tests; RBC, red blood cells; SVR, alveolar surface-to-volume ratio; T, exchange time constant; TP, interstitial tissue/plasma.

*Unpaired t-test, p < 0.05.
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summarized in Table 1. ADC, Lm, and SVR showed significances between the control group and subgroup ALI D14 (ADC: p = 0.009, Lm:

p = 0.031 and SVR: p = 0.019).

3.3 | Hyperpolarized 129Xe MRS

Figure 2 shows the representative dissolved xenon recovery curves measured from each group. Dissolved xenon signals obviously recovered

more slowly in subgroup ALI D7, wherein the normalized TP signal was significantly higher compared with that in the control group. Moreover,

xenon signal recovery curves in subgroup ALI D14 were similar to those in the control group.

Figure 3 shows the comparisons of the physiological parameters derived with HP 129Xe MRS among the groups. Significant differences were

observed in the measured T, d, and Hct between subgroup ALI D2 and the control group (T: p = 0.038; d: p = 0.029; Hct: p = 0.006), and sub-

group ALI D7 and the control group (T: p = 0.006; d: p = 0.005; Hct: p < 0.001). Moreover, significant differences were also observed in Hct

between the control group and subgroup ALI D14 (p = 0.002) and between the subgroups ALI D2 and ALI D7 (p = 0.002). In addition, the

highest T and d measurements were found in subgroup ALI D2, and the lowest Hct was observed in subgroup ALI D7.

Figure 4 shows the comparisons of the dissolved signals at the exchange time of 100 ms among the groups. RBC/TP showed significant dif-

ferences between the control group and subgroup ALI D2 (p = 0.004), the control group and subgroup ALI D7 (p < 0.001), the control group and

subgroup ALI D14 (p = 0.001), subgroups ALI D2 and ALI D7 (p = 0.001), and subgroups ALI D7 and ALI D14 (p = 0.018). Moreover, significant

differences were observed in RBC/gas between the control group and subgroup ALI D7 (p = 0.041) and the control group and subgroup ALI D14

(p < 0.001). Significant differences were also observed in TP/gas between the control group and subgroup ALI D7 (p = 0.035) and subgroups ALI

D7 and ALI D14 (p = 0.032). After being treated with LPS, RBC/gas decreased with time, TP/gas increased first and then decreased, and RBC/TP

decreased first and then increased. In addition, the highest TP/gas and lowest RBC/TP were observed in subgroup ALI D7. The results are also

summarized in Table 1.

3.4 | Histological observations

Figure 5 shows the representative histological sections from all groups, and the collagen deposition was stained in blue in Masson's trichrome sta-

ined images. Severe neutrophil infiltration can be observed in subgroup ALI D2, and thickened septal wall thickness and collagen deposition that

spreads throughout the lung can be observed in subgroup ALI D7, indicating pulmonary fibrosis. Moreover, collagen deposition and enlarged alve-

olar sizes were observed in subgroup ALI D14, although neutrophil infiltration and thickened septal wall were not observed. The septal wall thick-

ness measured with histology was 5.91 ± 0.38, 8.26 ± 1.13, 8.12 ± 0.43, and 6.76 ± 0.74 μm for the control group and subgroups ALI D2, ALI D7,

F IGURE 1 Representative ADC, Lm, and SVR maps from the control group and subgroups ALI D2, ALI D7, and ALI D14. Higher ADC, Lm,
and lower SVR can be observed in subgroup ALI D14 compared with the control group. ADC, apparent diffusion coefficient; ALI, acute lung
injury; D14, 14 days after instillation; D2, 2 days after instillation; D7, 7 days after instillation; Lm, alveolar mean chord length; SVR, alveolar
surface-to-volume ratio.
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F IGURE 2 Typical dissolved xenon signal recovery curves for each group. Compared with the control group (A), the recovery of RBC and TP
129Xe signal was slower in subgroup ALI D2 (B). Of all the groups, the recovery of dissolved xenon signal was slowest in subgroup ALI D7 (C), and
the TP signal was obviously higher than that in the other groups. Subgroup ALI D14 (D) has similar dissolved xenon signal recovery curves as
those in the control group. Each point on the curves is an average of three separate experiments. ALI, acute lung injury; D14, 14 days after
instillation; D2, 2 days after instillation; D7, 7 days after instillation; RBC, red blood cells; TP, interstitial tissue/plasma.

F IGURE 3 Comparisons of the physiological parameters derived with 129Xe MRS among the groups. Compared with the control group, both
the exchange time constant (A) and septal wall thickness (B) increased first and then decreased after the rats were treated with LPS. On the
contrary, blood hematocrit (C) decreased first and then increased. ALI, acute lung injury; D14, 14 days after instillation; D2, 2 days after
instillation; D7, 7 days after instillation; LPS, lipopolysaccharide.
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and ALI D14, respectively. Significant differences were observed between the control group and subgroup ALI D2 (p = 0.007) and the control

group and subgroup ALI D7 (p < 0.001). Moreover, the measured septal wall thickness showed a good correlation with that using quantitative his-

tology, as shown in Figure 6.

4 | DISCUSSION

In this study, the physiological changes in an animal model of ALI were dynamically assessed using HP 129Xe MR, and promising biomarkers were

proposed. Our preliminary results showed that pulmonary function deteriorated first and then recovered in the ALI group after LPS treatment,

and that the ratio of 129Xe in red blood cells to interstitial tissue/plasma (i.e., RBC/TP) may serve as a promising biomarker for quantifying the

physiological changes during the progression of ALI in the animal model. Moreover, the measurements of the gas exchange time constant (T) and

ADC were sensitive to the short- and long-term outcomes of ALI, respectively. These findings showed that, using an animal model of ALI,

F IGURE 4 Comparisons of RBC/gas, TP/gas, and RBC/TP among the groups. Compared with the control group, RBC/gas decreased with the
progression of ALI, and TP/gas increased first and then decreased. Moreover, RBC/TP decreased first and then increased after the rats were
treated with LPS. RBC/TP showed significant differences between the groups. ALI, acute lung injury; D14, 14 days after instillation; D2, 2 days
after instillation; D7, 7 days after instillation; LPS, lipopolysaccharide; RBC, red blood cells; TP, interstitial tissue/plasma.

F IGURE 5 H&E and Masson's trichrome stained histological images of the representative rats from the control and ALI groups (scale
bar = 50 μm). Compared with the control group, the inflammation (red arrows in the H&E-stained image) and alveolar disruption can be observed
in subgroup ALI D2, and obvious thickening of the septal wall and obvious collagen deposition can be observed in subgroup ALI D7. In subgroup
ALI D14, the enlarged alveolar and collagen deposition can be observed, although the inflammation and thickened septal wall were resolved. ALI,
acute lung injury; D14, 14 days after instillation; D2, 2 days after instillation; D7, 7 days after instillation; H&E, hematoxylin and eosin.
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functional and structural changes in the lung can be dynamically detected and quantified by HP 129Xe MR with high sensitivity without ionizing

radiation.

RBC/TP showed high sensitivity in the dynamic assessment of lung physiology in an ALI animal model. As a widely used 129Xe MR biomarker,

RBC/TP has been used for quantifying changes in gas exchange function caused by lung diseases, such as COPD, IPF, and COVID-19.18,29,30 In

this study, we found that RBC/TP decreased first and then increased in the ALI group, and the same trend was also observed in PFT measure-

ments. However, no statistical significance was found in PFTs measurements in the short term for the ALI animal model. In addition, changes in

RBC/TP were also consistent with the histological results, which indicated acute inflammation on the second day and fibrosis on the seventh day

after LPS treatment21,29 and substantially resolved inflammation on the 14th day.

Exchange time constant (T) measured with 129Xe MRS was a potentially sensitive biomarker for detecting the short-term abnormalities of

the alveolar–capillary membrane in an ALI animal model. The measured T substantially increased in the ALI group on the second and seventh

day after LPS treatment compared with the control group. These findings were similar to those reported from previous studies.21,31,32 This

may be because of the exudation and infiltration of polymorphonuclear neutrophils in lungs on the second day after LPS treatment,33 which

would make it difficult for xenon to enter into the capillary.20,21 Then, on the seventh day, secondary fibrosis after the acute inflammation33

would thicken the alveolar septal wall and reduce the gas exchange efficiency. On the 14th day after treatment, the measured T decreased in

the ALI group, probably because the acute inflammation was resolved31,34 and the reduced septal wall thickness made it easier for xenon to

pass through.

ABG analysis and the DLCO measure are widely used for assessing the lung gas exchange. ABG analysis can be used for assessing the severity

of ARDS,7 although ABG analysis is invasive, and arteries' blood is needed for obtaining the PaO2/FiO2 ratio. Meanwhile, it can only measure the

partial pressure of oxygen and carbon dioxide and cannot measure the gas exchange in the lung directly. DLCO measures the differences of carbon

monoxide concentration between the gas mixture inhaled and exhaled by the patient. It can assess the ability of the lung to transfer gas from

inspired air to the bloodstream, but it cannot probe the vasculature at the alveolar–capillary interface.35 Compared with these methods, 129Xe

MR allows direct assessment of the lung gas exchange function by analyzing 129Xe signal in alveolar, TP, and capillary RBC. The derived parame-

ters from CSSR, such as hematocrit and RBC/gas ratio, can be used for evaluating the gas exchange function at the alveolar–capillary interface,

which can hardly be obtained using clinical methods without invasion.35,36

ADC and morphological parameters measured with 129Xe DWI suggest the potential of HP 129Xe MRI for assessing the long-term alveolar

structural changes in ALI. The increased ADC and Lm and decreased SVR on the 14th day after LPS treatment suggested the increase of the alve-

olar sizes and agreed with the results of PFTs and histological analysis. These emphysema-like injuries were similar to those reported in previous

studies.31,37,38 No significant differences were observed in the measured ADC and morphological parameters on the second and seventh day after

LPS treatment compared with the control group. This was probably because of the simultaneous existence of acute inflammation and

emphysema-like changes. The inflammation would lead to a decrease in the alveolar size,39 but emphysema-like changes would cause an increase

in the alveolar size.38

F IGURE 6 Correlation of the septal thickness derived by 129Xe MRS and quantitative histology (p < 0.001, r = 0.928). The solid line is the
linear fit of the two methods. ALI, acute lung injury; D14, 14 days after instillation; D2, 2 days after instillation; D7, 7 days after instillation; MRS,
magnetic resonance spectroscopy.
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To investigate the progression of ALI, the lung injury model was induced by intratracheal instillation of LPS in our study. As one of the most

widely used rodent models of acute lung inflammation, the responses of the lungs to injury would change with time in the short-term effect of

LPS,40 while for the long-term effect of LPS, some studies have shown that the inflammation would be resolved and the lung could recover

from injury.31,41 Such characteristics are similar to the reparative processes of ALI in humans.34 To depict the dynamic development of ALI, dif-

ferent rats were used for each time point. A similar design has also been commonly used in animal experiments for studying the disease

process.31,41

Our research can be extended in several ways. Endotracheal intubation with tracheostomy was used in this study, and rats would be eutha-

nized after examinations, which hinders the longitudinal study on the same rats. Instead, we used five different rats from the ALI group at dif-

ferent times post-LPS instillation, a strategy widely used in animal studies for assessing progression.34,42 Next, three time points were chosen

after the rats were treated with LPS according to the previous study31; however, these time points may not fully depict the development of

ALI, and more time points are needed for a comprehensive understanding of LPS-induced ALI. Furthermore, the gas exchange function was

measured globally with MRS in this study, and local assessment of the gas exchange function should also be included in future studies. Given

the potential alveolar collapse in the ALI model, a meticulous ADC protocol that incorporates PEEP and recruitment maneuver may be

employed in future studies to minimize the biases in ADC measurements. Lastly, although dynamic changes in lung physiological function were

observed through 129Xe MR in the ALI animal model, further studies are needed to determine the applicability of this technique for evaluating

ALI in the clinic. On the one hand, whether the observed lung physiological changes are unique to ALI warrants further investigation. On the

other hand, the applications of 129Xe MRI for the assessment of critically ill patients in the clinic remains a challenge, particularly for those

patients requiring mechanical ventilation who cannot leave the intensive care unit, and customized hardware and pulse sequences tailored to

these patients are needed.

5 | CONCLUSIONS

In summary, we employed HP 129Xe MR to evaluate the progression of lung structural and functional changes in vivo in an animal model of ALI

induced by LPS. Our results showed that RBC/TP can sensitively and dynamically assess the gas exchange function changes, T can assess the

short-term functional changes, and ADC can assess the long-term alveolar structural changes. These findings may support the use of HP 129Xe

MR in future clinical studies of ALI.
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