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Abstract
Background: Hyperpolarized (HP) gas MRI enables the clear visualization of
lung structure and function. Clinically relevant biomarkers, such as ventilated
defect percentage (VDP) derived from this modality can quantify lung ventilation
function. However, long imaging time leads to image quality degradation and
causes discomfort to the patients.Although accelerating MRI by undersampling
k-space data is available, accurate reconstruction and segmentation of lung
images are quite challenging at high acceleration factors.
Purpose: To simultaneously improve the performance of reconstruction and
segmentation of pulmonary gas MRI at high acceleration factors by effectively
utilizing the complementary information in different tasks.
Methods: A complementation-reinforced network is proposed, which takes the
undersampled images as input and outputs both the reconstructed images and
the segmentation results of lung ventilation defects.The proposed network com-
prises a reconstruction branch and a segmentation branch.To effectively exploit
the complementary information,several strategies are designed in the proposed
network.Firstly,both branches adopt the encoder-decoder architecture,and their
encoders are designed to share convolutional weights for facilitating knowl-
edge transfer. Secondly, a designed feature-selecting block discriminately feeds
shared features into decoders of both branches, which can adaptively pick suit-
able features for each task. Thirdly, the segmentation branch incorporates the
lung mask obtained from the reconstructed images to enhance the accuracy of
the segmentation results.Lastly, the proposed network is optimized by a tailored
loss function that efficiently combines and balances these two tasks, in order to
achieve mutual benefits.
Results: Experimental results on the pulmonary HP 129Xe MRI dataset (includ-
ing 43 healthy subjects and 42 patients) show that the proposed network
outperforms state-of -the-art methods at high acceleration factors (4, 5, and 6).
The peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and Dice
score of the proposed network are enhanced to 30.89,0.875,and 0.892,respec-
tively. Additionally, the VDP obtained from the proposed network has good
correlations with that obtained from fully sampled images (r = 0.984). At the
highest acceleration factor of 6, the proposed network promotes PSNR, SSIM,
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and Dice score by 7.79%, 5.39%, and 9.52%, respectively, in comparison to the
single-task models.
Conclusion: The proposed method effectively enhances the reconstruction and
segmentation performance at high acceleration factors up to 6. It facilitates fast
and high-quality lung imaging and segmentation,and provides valuable support
in the clinical diagnosis of lung diseases.

KEYWORDS
hyperpolarized gas MRI, image reconstruction, lung segmentation, multi-task learning, ventilation
defects

1 INTRODUCTION

Magnetic Resonance Imaging (MRI) is a radiation-free
and noninvasive medical imaging technique, which pro-
vides images with high resolution and excellent soft
tissue contrast.1,2 Hyperpolarized (HP) gas MRI (such
as 3He or 129Xe) enables visualization of lung struc-
ture and function.3 Particularly, HP 129Xe MRI can offer
gas-gas and gas-blood exchange information, which is
helpful for the clinical diagnosis of lung diseases such
as coronavirus disease 2019 (COVID-19).4–6 Automatic
analysis (e.g. segmentation) of the gas MRI can obtain
clinically relevant parameters, which quantitatively eval-
uate pulmonary pathologies. However, HP gas MRI
data are generally acquired during a single breath-hold,
and the acquisition time is approximately 20 s. Such
long breath-holding time will cause discomfort to the
patients, especially for those with compromised respira-
tory function. Moreover, long imaging time can degrade
image quality because the longitudinal magnetization
of HP noble gases decays over time.7 Accordingly, it
is important to achieve fast and accurate imaging and
segmentation of gas MRI.

To shorten the imaging time, the raw k-space data
are usually undersampled.The undersampling schemes
cause severe aliasing artifacts in the undersampled
images. Therefore, various efforts have focused on
developing reconstruction methods to remove under-
sampling artifacts and improve image quality. Com-
pressed sensing (CS) is one representative approach,
which exploits the sparsity of signals in a specific
transform domain to recover the fully sampled images
from undersampled k-space data through nonlinear
reconstructions.8 Ajraoui and coworkers first applied the
CS algorithm to accelerate pulmonary HP gas MRI
in 2010,9 and then they combined some prior knowl-
edge to further improve acceleration factor (AF) and
reconstruction performance.10 Moreover, CS was used
to reconstruct pulmonary dynamic HP gas MR images
with high temporal and spatial resolution.11 However,
there are limitations in conventional CS techniques,such
as relatively low reconstruction speed and difficulty in
tuning the weighting parameters.12

Recently, deep learning has shown great potential in
accelerating HP gas MRI and exhibits superior perfor-
mance both in reconstruction quality and speed. Deep
learning-based reconstruction algorithms can learn the
mapping between the undersampled and fully sampled
MRI data.13–15 Convolutional neural network (CNN) is
a popular deep learning-based reconstruction model.16

Duan and coworkers first introduced deep learning into
HP gas MRI reconstruction.17 They adopted a cas-
caded U-Net model incorporating prior knowledge of 1H
images (CasNet) to fast and accurately reconstruct pul-
monary 129Xe MR images from undersampled images.
Then, a deep cascade of residual dense network (DC-
RDN) was proposed to accelerate multiple b-value HP
gas diffusion-weighted MRI (DW-MRI).18

Although existing CNN-based HP gas MRI recon-
struction methods outperform conventional CS algo-
rithms, they still contain some challenges. Firstly, current
gas MRI reconstruction networks require a large amount
of training data to ensure the accuracy of the recon-
struction, especially for high AFs. However, HP gas MRI
data are limited because gas MRI has not been widely
used in the clinic. This results in the low generalization
capability of the current HP gas MRI reconstruction net-
works at high AFs. Secondly, these models only focus
on the reconstruction quality and do not consider the
downstream applications (such as segmentation) used
to obtain clinically relevant parameters.Therefore, these
reconstruction networks may lose some details that are
crucial for the segmentation but less influential to overall
image quality.19

Ventilation defect percentage (VDP) is an impor-
tant quantitative metric to evaluate lung function, which
is defined as the ratio of the ventilation defect vol-
ume in pulmonary HP gas MR images to the thoracic
volume in 1H MR images.20 To facilitate the compu-
tation of VDP, it is necessary to accurately segment
the ventilation defect region of the lung.21 Current
HP gas MR image segmentation algorithms typically
take reconstructed images as input without consider-
ing the reconstruction process.22,23 This results in the
segmentation performance that highly depends on the
quality of the reconstructed images.However, the loss of
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380 LUNG MRI RECONSTRUCTION AND SEGMENTATION

information in the reconstruction process is inevitable,
especially at high AFs, even with advanced reconstruc-
tion methods.24–28 Existing HP gas MRI reconstruction
methods mainly perform reconstruction at an AF of
4. For higher AFs (e.g., 6), although they can restore
lung structure to some extent, many fine details are
lost.17,18 This will negatively influence the segmentation
results. Therefore, it is desirable to develop an effi-
cient method to concurrently perform reconstruction and
segmentation of HP gas MRI.

Multi-task learning is a type of learning algorithm that
aims to leverage multiple sources of information from
different tasks to enhance the generalization ability of
the model. Previous studies have attempted to simulta-
neously perform reconstruction and segmentation on 1H
MRI such as cardiac and liver.Huang and coworkers pro-
posed a joint network called Joint-FR-Net for concurrent
cardiac MRI reconstruction and myocardium contour
segmentation.26 Sui and coworkers developed a multi-
task learning-based framework (called RecSeg), which
employed two cascaded U-Nets to handle liver MRI
reconstruction and lesion segmentation at the same
time.27 Their results have demonstrated that multi-task
learning can enhance the performance of 1H MRI recon-
struction and segmentation. Building on these previous
studies, we believe that the multi-task learning strategy
can address the issue of unsatisfactory performance in
HP gas MRI reconstruction and segmentation at high
AFs. The main challenge in establishing a multi-task
learning framework for HP gas MRI lies in effectively
utilizing the complementary information between the
undersampling reconstruction and the segmentation of
lung ventilation defects. Moreover, HP gas MRI is more
susceptible to noise than 1H MRI due to the nonrenewa-
bility of HP magnetization,17 making it challenging to
extract accurate features at high AFs.

In this work, we propose a complementation-
reinforced network for joint reconstruction and
segmentation of pulmonary gas MRI (called RS-
Net) using multi-task learning. The RS-Net adopts a
dual-branch encoder-decoder architecture, with one
branch dedicated to the reconstruction and the other
to the segmentation of lung ventilation defects. Com-
plementary information is reinforced and utilized in
multiple aspects of the proposed network. Through
the weight-sharing of the two encoders, the encoding
process allows for knowledge transfer between the two
tasks. Moreover, a feature-selecting block is devised
to maximize the benefits of feature sharing between
the two tasks by picking the most relevant features for
each task. Additionally, the lung mask generated from
the reconstructed image is fed to the segmentation
branch for further improving segmentation results. In
this way, RS-Net enables mutual assistance between
the two tasks, resulting in improved results for both
tasks. Furthermore, RS-Net achieves segmentation
of the ventilation defects directly from undersampled

k-space data. This can retain more original information
that contributes to segmentation, thereby improving
performance at high AFs. Accordingly, RS-Net would
be beneficial for the clinical diagnosis of lung diseases,
especially for patients who have difficulty holding their
breath for a long time.

2 MATERIALS AND METHODS

2.1 Problem formulation

Let x ∈ ℂM×N denotes the 2D fully sampled HP gas MR
image,and yu ∈ ℂT×N (T < < M) denotes the undersam-
pled k-space data, which can be described as follows:

yu = u O f2D (x) + n (1)

where u represents a binary undersampling mask,
n represents the acquisition noise, ℂ represents the
complex-valued vector space, ○ represents element-
wise multiplication and f2D represents 2D Fourier
transform.

Our purpose is to reconstruct the fully sampled
image x and predict the ventilation defect region s
from the undersampled k-space data.To simultaneously
solve the two issues, we construct a complementation-
reinforced network (RS-Net). The network aims to find
the following minimization:

argmin
𝜃

L(x, s, H(f−1
2D (yu); 𝜃)) (2)

where H denotes the RS-Net model, θ denotes hidden
parameters in the model, L denotes the loss function
of the model, and f −1

2D denotes the 2D inverse Fourier
transform.

2.2 Proposed
complementation-reinforced network
RS-Net

In this section, we provide the detailed description
of the proposed complementation-reinforced network
(RS-Net), which combines the reconstruction and seg-
mentation of HP gas MRI in a unified model for allowing
the two tasks to benefit from each other. Figure 1
illustrates the architecture of the proposed RS-Net.
It consists of two branches: Recon Branch and Seg
Branch for reconstruction and segmentation of HP gas
MRI, respectively.

Recon Branch and Seg Branch are both based on
the U-Net architecture,which can transfer finely detailed
features from the shallower layers of the encoder to
the decoder via skip connections.29–31 The real and
imaginary parts of the Zero-filling complex image are
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LUNG MRI RECONSTRUCTION AND SEGMENTATION 381

F IGURE 1 The overview of the RS-Net. The RS-Net is comprised of two branches, namely Recon Branch and Seg Branch. The two
branches are both in encoder-decoder form and their encoders share weights. Feature-selecting block is designed to adaptively choose suitable
features for different tasks from the shared features f. Then Recon Decoder and Seg Decoder take the selected featuresf R

se andf S
se as inputs,

respectively, to generate the reconstructed images and segmentation results. To improve the accuracy of the segmentation result, the lung mask
obtained from the reconstructed image is used as supplementary information to correct the lung mask obtained from the 1H MRI.

concatenated to form a two-channel input map that
is fed to the encoders in both branches. The encoder
employs a series of contracting steps to generate
multi-scale encoded features. The number of feature
channels in the first contracting step is M. Then, the
channel dimension of the feature is doubled and the
spatial resolution is halved in each step. The feature
extracted by the encoders in each branch can be
formulated by:

fr = Hr
e(f−1

2D (yu); 𝜃r
e) (3)

fs = Hs
e(f−1

2D (yu); 𝜃s
e) (4)

where Hr
e and Hs

e denote Recon Encoder and Seg
Encoder.𝜃r

e and 𝜃s
e denote the parameters in the Hr

e and
Hs

e, respectively.To facilitate feature sharing between the
reconstruction and segmentation tasks, we enforced
weight sharing between the two encoders. That is
𝜃r

e = 𝜃s
e.

The shared features contain complex information
from the two tasks, and it is important to carefully select
reliable information for different tasks to effectively lever-
age them. To this end, we propose a feature-selecting
block that selects discriminative features for each task.

The detailed architecture of the feature-selecting block
is illustrated in Figure 1 (the green container). The
shared features are represented as f ∈ RH×W×C, where
f = fr = fs, H × W means the spatial dimension, and C
means the channel dimension. First, a pixel-wise weight
α ∈ RH×W×C is learned by a 3 × 3 convolutional layer
followed by rectified linear unit (ReLu) activation and a
1 × 1 convolutional layer followed by sigmoid activation.
Then f is weighted by α, which can be formulated by:

fp = f ⊗ 𝛼,𝛼 ∈ (0, 1) (5)

where fp is the pixel-wise weighted features, and
⊗ denotes the element-wise multiplication. Further, a
channel-wise weight γ ∈ R1×1×C is learned by a global
pooling layer and a fully connected layer followed by sig-
moid activation. Finally, fp is channel weighted by γ to
obtain the selected features fse,which can be formulated
by:

fse = Fc
(
fp, 𝛾

)
, 𝛾 ∈ (0, 1) (6)

where Fc (⋅) is a channel-wise multiplication for feature
map channels and corresponding channel weights. By
learning different values of α and γ, Recon Branch and
Seg Branch identify the task-specific features (f R

se and
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382 LUNG MRI RECONSTRUCTION AND SEGMENTATION

f S
se) that make the most significant contributions to their

respective objectives.
Subsequently, the selected features f R

se are used
by the Recon Decoder to produce the reconstructed
images. Meanwhile, the selected features f S

se are uti-
lized by the Seg Decoder to generate the segmentation
results.The architectures of the Recon Decoder and the
Seg Decoder are the mirror structures of the encoder,
containing multiple expansive steps and an output layer
for obtaining the target results.Both decoders can reuse
the features extracted by the encoders through skip con-
nections,allowing the two tasks to regularize each other.
The main difference between the two decoders is the
output layer. The output layer of Recon Decoder is a
1 × 1 convolutional layer without activation. While Seg
Decoder adds a sigmoid activation after the 1 × 1 con-
volutional layer. Moreover, to constrain the segmentation
in the lung region, the output of the sigmoid activation
layer is multiplied with the lung mask.

In general, the lung mask is obtained from lung 1H
MRI. However, due to noise and the influence of the tra-
chea during the actual acquisition process, some lung
regions in the 1H MRI image may be unclear or incom-
plete. These missing areas of the lung in 1H MRI may
be contained in the 129Xe MR images. Therefore, we
segment the reconstructed 129Xe MR images using the
seeded region growing method to obtain a complemen-
tary lung mask. Then we merge this mask with the lung
mask obtained from the 1H MRI images via the union
operation, which yields a corrected lung mask. In this
way, the RS-Net can achieve more precise segmenta-
tion results for ventilation defects. This could facilitate
more accurate clinical diagnoses of lung diseases.

During the training, the segmentation task enforces
the network to focus more on high-level semantic fea-
tures,as they are crucial for predicting correct ventilation
defect regions. This benefits RS-Net to reconstruct
images with more details, especially in ventilation defect
regions. Moreover, under the constraint of the recon-
struction task, the network is powerful in suppressing
artifacts, leading to clearer and more precise segmen-
tation results. Accordingly, in the proposed RS-Net, the
two tasks will complement and reinforce each other and
then achieve better results at the same time.

2.3 Loss function

To find an optimal balance between reconstruction and
segmentation tasks, we design a weighted loss to train
RS-Net. The loss of the RS-Net is composed of two
parts: the reconstruction loss Lr and the segmentation
loss Ls. For the reconstruction task, the target objective
function can be defined as,

argmin
𝜃r

e,𝜃r
d

Lr (x, H(f−1
2D (yu); 𝜃r

e, 𝜃r
d)) (7)

TABLE 1 The basic information of the study subjects.

Subject number

Clinical indications
Age
(mean ± SD) Male Female

Healthy 35.5 ± 13.5 25 18

Asthma 43.5 ± 23.3 0 2

COPD 58.0 ± 12.9 8 1

Bronchiectasis 60.5 ± 24.7 2 0

Chronic inflammation 59.6 ± 11.3 9 2

Pulmonary tuberculosis 66.5 ± 21.9 1 1

Pulmonary nodule 52.7 ± 11.7 7 9

Total 45.7 ± 16.5 52 33

Abbreviation: SD, standard deviation.

where 𝜃r
e and 𝜃r

d denote the parameters of the Recon
Encoder and Recon Decoder, respectively. The recon-
struction loss Lr is defined as a sum of L1 and L2 loss
functions, which not only prevents over-smoothing but
ensures robust convergence.32

For the segmentation task, the target objective func-
tion can be defined as,

argmin
𝜃s

e,𝜃s
d

Ls(s, H(f−1
2D (yu); 𝜃s

e, 𝜃s
d)) (8)

where 𝜃s
e and 𝜃s

d denotes the parameters of the Seg
Encoder and Seg Decoder, respectively. The segmenta-
tion loss Ls is the Dice loss function.33

The total loss of the RS-Net is the weighted sum of
the two losses, which is described as:

Ltotal = Lr + 𝛽Ls (9)

where β is a weighting parameter, which controls the
influence of the segmentation loss on the total loss.

The RS-Net is trained in an end-to-end manner,so the
parameters of the model are updated simultaneously.
The key issue in the training process is to find the optimal
hyperparameter of the loss (β) so that the two tasks are
mutually beneficial. The selection of β will be discussed
in section 2.7.

2.4 Data acquisition and preprocessing

85 subjects in total were enrolled for the experimen-
tal evaluations including 43 healthy subjects and 42
patients with various pulmonary pathologies such as
chronic obstructive pulmonary disease (COPD),asthma,
and pulmonary nodule (see Table 1 for the details
about subjects’ information). All the experiments were
approved by the local Institutional Review Board (IRB)
and all subjects provided informed consents. MRI scans
were conducted using a 1.5 Tesla whole-body MRI
scanner (Avanto, Siemens Medical Solutions). Enriched
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LUNG MRI RECONSTRUCTION AND SEGMENTATION 383

129Xe gas was polarized by a commercial xenon polar-
izer (verImagin Healthcare, Wuhan) based on the Rb-
129Xe spin-exchange optical pumping (Rb-129Xe SEOP)
method.Then 500 mL hyperpolarized 129Xe thawed into
a Tedlar bag was mixed with 500 mL medical-grade N2
gas to generate 1 L gas mixture. The available polar-
ization of 129Xe in the Tedlar bag was approximately
25%. All subjects inhaled the gas mixture from func-
tional residual capacity and then held their breath for
data acquisition.

A home-built transmit-receive vest radiofrequency
(RF) coil was used for HP 129Xe imaging and a vol-
ume coil was used for 1H imaging. The MRI parameters
for pulmonary HP 129Xe imaging were as follows: 3D
bSSFP sequence, matrix size = 96 × 84, repetition time
(TR) = 4.2 ms, echo time (TE) = 1.9 ms, number of
slices = 24, slice thickness = 8 mm, flip angle = 10◦,
scan time = 8.4 s. In the same breath-hold, anatomic
1H images were acquired after pulmonary 129Xe MR
images. The parameters for 1H imaging were as fol-
lows: 3D FLASH sequence, matrix size = 96 × 84,
TR = 2.4 ms, TE = 0.7 ms, number of slices = 24, slice
thickness = 8 mm, flip angle = 5◦, scan time = 2 s.
129Xe and 1H MR images were aligned through affine
registration before further experiments.21

To confirm the image quality, we excluded slices out-
side the lung region and slices with signal-to-noise ratio
(SNR) lower than 6.6. Since the noise distribution of an
MR image is Rician, SNR was calculated by34:

SNR =
Meansignal − Meannoise

Stdnoise
×

√
2 −

𝜋

2
(10)

where Meansignal is the average signal within the lung,
Meannoise and Stdnoise are the mean value and standard
deviation of the background noise outside the lung. In
this way, we excluded 1111 images and finally obtained
a total of 929 HP 129Xe MR images for experiments.
The images were padded to 96 × 96 to fit the U-Net
architecture.We randomly selected 68 subjects for train-
ing, 8 subjects for validation, and another 9 subjects
for testing. Training images were augmented with hor-
izontal flips and the 90◦, 180◦, and 270◦ rotations. In
this way, the number of training images was augmented
4 folds. Cartesian undersampling scheme was used in
this work and the AFs were 4, 5, and 6. Specifically,
the fully sampled k-space data was undersampled in
the phase-encoding direction according to a variable-
density Cartesian random undersampling matrix. The
matrix was generated by the Monte Carlo algorithm.11

The ground truth of segmentation of the ventilation
defect region was obtained by classifying fully sampled
HP 129Xe MR images with the K-means clustering algo-
rithm (the commonly used method for segmentation of
the ventilation defect region).21 The lung mask from 1H
MRI was initially segmented by the seeded region grow-
ing method,35 and manually corrected by two experts

(with more than 5 years of experience in pulmonary
imaging). Then the lung mask obtained from the fully
sampled HP 129Xe MR images was used to supplement
the lung mask obtained in the previous step.

2.5 Implementation details

RS-Net was implemented using Tensorflow2.0 on a
workstation with 3 GPU NVIDIA RTX 2080Ti, and Intel
Xeon (R) Gold 6128 central processing unit (CPU). The
number of initial feature channels (M) was set to 64.Due
to the complexity of training a multi-task network, we
employed different learning rates for the various blocks
of RS-Net for better convergence. An initial learning
rate of 0.0005 was applied for both encoders and the
Recon Decoder, which exponentially decayed with the
increasing training epochs. The initial learning rate of
Seg Decoder was set to 0.0002 and it also exponentially
decayed with the increasing training epochs. Adam opti-
mizer was used to optimize RS-Net. The batch size was
set to 16 and the training was stopped after 200 epochs.

2.6 Performance evaluation

To evaluate the effectiveness of the multi-task learn-
ing for the reconstruction task, we compared RS-Net
with a plain U-Net for HP gas MRI reconstruction
(called Single-Recon), Zero filling, CS method,9 and
three state-of -the-art deep learning-based methods,
including CasNet,17 KIKI-net,36 and a deep cascade
CNNs (referred to as Deep-Cascade).37 To evaluate
the segmentation performance of RS-Net, we com-
pared RS-Net with a plain U-Net for segmentation of
ventilation defect region from undersampled k-space
data (called Single-Seg),and reconstruction-based seg-
mentation methods,namely Reconstruction-k (including
Zero filling-k, CS-k, CasNet-k, KIKI-net-k, and Deep-
Cascade-k). The Reconstruction-k method means that
K-means clustering method is used to segment recon-
structed images of various state-of -the-art reconstruc-
tion methods. Additionally, as an upper bound, we
employed a U-Net for the direct segmentation of fully
sampled images (called FS_U-Net).

Quantitative results of reconstruction were evaluated
in terms of peak signal-to-noise ratio (PSNR) and struc-
ture similarity (SSIM). PSNR is a widely used image
quality metric,which is related to the mean squared error
(MSE).38 SSIM is used to evaluate the structural similar-
ity and detailed features of two images.39 In a pulmonary
gas MR image, the background and the lung region
have almost the same area, but only the lung region is
helpful for clinical diagnosis. Therefore, both PSNR and
SSIM were only computed over the lung region for bet-
ter evaluation of reconstruction performance.17 Higher
PSNR and SSIM indicate better reconstruction results.
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384 LUNG MRI RECONSTRUCTION AND SEGMENTATION

F IGURE 2 The average PSNR, SSIM, and Dice scores of RS-Net with different β. β goes from 0.0001 to 10.

Dice score was adopted to evaluate the segmentation
performance, which is defined as:

Dice (S, G) =
2|S ∩ G||S| + |G| (11)

where S is the segmentation result and G is the ground
truth. The higher Dice score indicates better segmenta-
tion results. In addition, to validate the clinical potential
of the RS-Net, we compared the VDP values calculated
from various segmentation methods with that calculated
from fully sampled images.

2.7 The selection of β

To find an appropriate β, we trained a series of RS-Net
with different β and evaluated their performance on the
same datasets at an AF of 4.The average PSNR,SSIM,
and Dice scores are shown in Figure 2. We can observe
that the network performance is heavily influenced by
the weights of segmentation loss (β).When β= 0.01, the
RS-Net achieves optimal performance in both the recon-
struction and segmentation tasks. For our datasets, the
value of the segmentation loss is 100 times greater than
that of the reconstruction loss.Upon setting β to 0.01,the
value of the segmentation loss becomes comparable to
that of the reconstruction loss, enabling the network to
attain a better balance between the segmentation and
reconstruction tasks. As such, we set β to 0.01 for all the
other investigations in this work.

3 RESULTS

3.1 Single-Recon versus RS-Net

Figure 3 presents the quantitative comparisons between
Single-Recon and RS-Net at various AFs. PSNR and
SSIM values obtained by the two methods are shown in
Figure 3a and Figure 3b, respectively. From the results,
we can find that the proposed RS-Net has higher PSNR

and SSIM values than Single-Recon at each AF.Particu-
larly,at the highest AF of 6,RS-Net leads to the increase
of PSNR by 7.79% and the increase of SSIM by 5.39%,
compared with Single-Recon. Moreover, when the AF
increases from 4 to 6, although it is anticipated that the
reconstruction performance degrades, the decrease in
PSNR and SSIM values of RS-Net is less than that of
Single-Recon.

Figure 4 shows the representative reconstruction
results of Single-Recon and RS-Net at AFs of 4–6.
The reconstructed images of the two methods and cor-
responding error maps are displayed on the left and
right of the figure, respectively. It can be seen that
both Single-Recon and RS-Net can successfully remove
undersampling artifacts at each AF. However, some
detailed structures are blurred in the reconstructed
images of Single-Recon, especially at high AF (indi-
cated by red arrows). These structures are recovered
clearly and the edge sharpness is well preserved in the
results of the RS-Net. In summary, the proposed RS-Net
yields better visual results with more details and fewer
errors than Single-Recon.

3.2 Comparison with the
state-of-the-art reconstruction algorithms

Table 2 tabulates the quantitative results of all com-
parison reconstruction methods at different AFs for the
healthy and patient test data. In the last five rows, the
total average PSNR and SSIM values are listed. It can
be observed that the proposed RS-Net has the highest
PSNR and SSIM values among comparison methods
for all clinical indications at each AF. In particular, com-
pared with Deep-Cascade (the highest PSNR value of
the other methods), RS-Net leads to the increase of
PSNR by 2.83%, 3.73%, and 4.71% at AF of 4–6 for all
test data, respectively.

Figures 5 and 6 show the representative results from
healthy subjects and patients obtained by all com-
parison reconstruction methods at AF of 4 and 6,
respectively.The representative results at an AF of 5 are
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LUNG MRI RECONSTRUCTION AND SEGMENTATION 385

F IGURE 3 Quantitative comparisons between Single-Recon and RS-Net at various AFs. (a) The bar plot shows the average and standard
deviation of PSNR values of images reconstructed by Single-Recon and RS-Net at various AFs. (b) The bar plot shows the average and
standard deviation of SSIM values of images reconstructed by Single-Recon and RS-Net at various AFs.

F IGURE 4 Visual comparison of Single-Recon and RS-Net at different AFs. The error maps show the differences in the lung regions
between the reconstructed images and fully sampled images.

shown in Supporting Information Figure S-1.The top two
rows of the figure are the results from a healthy subject
and the bottom two rows of the figure are the results
from a patient. Overall, RS-Net achieves more accurate
reconstruction than other reconstruction methods both
for healthy subjects and patients at all AFs. Specifically,
we can observe that deep learning-based reconstruc-
tion methods exhibit better performance in removing
undersampling artifacts than CS method. Nevertheless,
the reconstructed images of CasNet are oversmoothed
and miss lots of details in ventilation defect regions
(indicated by red arrows), especially at a high AF of 6.
These details become clearer in the results of KIKI-net

and Deep-Cascade,but are still insufficient.However,the
reconstructed images of RS-Net are almost the same as
the fully sampled images at relatively low AFs (4 and 5),
and preserve most of the fine details even at a high AF
of 6. In addition, the reconstructed images of the RS-
Net have the minimum pixel-value differences with fully
sampled images among all comparison methods.

3.3 Comparison of segmentation
performance

Table 3 lists the Dice scores calculated between the
ventilation defect regions obtained by all comparison
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386 LUNG MRI RECONSTRUCTION AND SEGMENTATION

TABLE 2 Quantitative results of all comparison methods at different Afs.

Clinical
indications Model

AF = 4 AF = 5 AF = 6
PSNR SSIM PSNR SSIM PSNR SSIM

Healthy Zero filling 16.11 (2.14) 0.536 (0.050) 15.92 (2.20) 0.513 (0.053) 15.10 (2.14) 0.458 (0.054)

CS 20.73 (1.28) 0.632 (0.077) 20.43 (1.16) 0.617 (0.077) 19.40 (1.58) 0.574 (0.078)

CasNet 25.73 (1.82) 0.808 (0.042) 23.92 (1.77) 0.755 (0.040) 23.90 (2.06) 0.732 (0.050)

KIKI-net 28.34 (1.89) 0.873 (0.035) 26.93 (1.87) 0.835 (0.042) 25.05 (1.98) 0.795 (0.051)

Deep-Cascade 28.27 (1.92) 0.861 (0.033) 26.88 (2.12) 0.831 (0.040) 25.29 (2.00) 0.797 (0.051)

RS-Net 29.39 (1.72) 0.880 (0.034) 28.21 (2.09) 0.850 (0.038) 26.74 (2.07) 0.808 (0.052)

Patient Zero filling 17.32 (2.16) 0.534 (0.087) 17.18 (2.08) 0.514 (0.086) 16.26 (2.01) 0.462 (0.088)

CS 22.69 (2.54) 0.624 (0.106) 22.35 (2.59) 0.608 (0.106) 21.15 (2.69) 0.566 (0.103)

CasNet 27.32 (3.01) 0.783 (0.073) 25.58 (2.88) 0.734 (0.079) 25.45 (2.80) 0.719 (0.083)

KIKI-net 30.54 (2.98) 0.866 (0.055) 29.15 (2.93) 0.827 (0.065) 27.48 (3.29) 0.780 (0.071)

Deep-Cascade 30.80 (3.25) 0.870 (0.048) 29.50 (3.14) 0.840 (0.056) 27.69 (3.13) 0.783(0.069)

RS-Net 31.52 (2.82) 0.873 (0.059) 30.45 (2.89) 0.841 (0.067) 28.87 (3.09) 0.798 (0.079)

Total Zero filling 16.96 (2.22) 0.534 (0.078) 16.81 (2.19) 0.514 (0.078) 15.91 (2.11) 0.461 (0.080)

CS 22.11 (2.41) 0.626 (0.098) 21.78 (2.43) 0.611 (0.098) 20.63 (2.54) 0.569 (0.096)

CasNet 26.85 (2.81) 0.790 (0.064) 25.09 (2.69) 0.740 (0.069) 24.99 (2.77) 0.723 (0.079)

KIKI-net 29.89 (2.88) 0.868 (0.050) 28.49 (2.84) 0.830 (0.059) 26.76 (3.15) 0.787 (0.066)

Deep-Cascade 30.04 (3.13) 0.869 (0.044) 28.72 (3.11) 0.838 (0.052) 26.97 (3.04) 0.789 (0.064)

RS-Net 30.89 (2.72) 0.875 (0.053) 29.79 (2.87) 0.844 (0.061) 28.24 (2.99) 0.801 (0.072)
aResults (mean (standard deviation)) were computed only over the lung region, and the best results are shown in bold.

F IGURE 5 Reconstruction results from a healthy subject (top two rows) and a patient (bottom two rows) at an AF of 4. Corresponding error
maps show the differences in the lung regions between the reconstructed images and fully sampled images.
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LUNG MRI RECONSTRUCTION AND SEGMENTATION 387

F IGURE 6 Reconstruction results from a healthy subject (top two rows) and a patient (bottom two rows) at an AF of 6. Corresponding error
maps show the differences in the lung regions between the reconstructed images and fully sampled images.

TABLE 3 Dice scores (mean (standard deviation)) obtained by all comparison methods at various AFs.

Clinical
indications AF Single-Seg Zero filling-k CS-k CasNet-k KIKI-net-k

Deep-
Cascade-k RS-Net

Healthy 4 0.802 (0.072) 0.232 (0.130) 0.616 (0.105) 0.739 (0.075) 0.814 (0.056) 0.820 (0.054) 0.868 (0.034)

5 0.735 (0.087) 0.223 (0.137) 0.608 (0.102) 0.716 (0.074) 0.789 (0.056) 0.800 (0.056) 0.833 (0.047)

6 0.702 (0.101) 0.196 (0.132) 0.572 (0.096) 0.700 (0.096) 0.750 (0.069) 0.764 (0.068) 0.815 (0.057)

Patient 4 0.862 (0.068) 0.416 (0.211) 0.736 (0.130) 0.822 (0.105) 0.880 (0.068) 0.883 (0.063) 0.901 (0.052)

5 0.827 (0.090) 0.406 (0.216) 0.729 (0.132) 0.786 (0.150) 0.856 (0.085) 0.866 (0.072) 0.876 (0.070)

6 0.801 (0.100) 0.377 (0.222) 0.709 (0.144) 0.771 (0.163) 0.832 (0.107) 0.834 (0.099) 0.862 (0.070)

Total 4 0.846 (0.074) 0.378 (0.220) 0.705 (0.137) 0.797 (0.108) 0.861 (0.071) 0.866 (0.067) 0.892 (0.050)

5 0.801 (0.098) 0.372 (0.227) 0.696 (0.135) 0.765 (0.134) 0.837 (0.084) 0.847 (0.074) 0.864 (0.067)

6 0.773 (0.109) 0.346 (0.226) 0.671 (0.146) 0.750 (0.149) 0.809 (0.104) 0.815 (0.096) 0.849 (0.070)
aThe best results are shown in bold.

methods and fully sampled images at various AFs.At all
AFs, RS-Net has the closest performance to the upper
bound FS_U-Net (Dice score of 0.932),and consistently
outperforms the other methods in terms of the mean and
standard deviation of Dice scores for all clinical indica-
tions. Compared with the single segmentation network
(Single-Seg), RS-Net leads to the increase of the Dice
score by 5.44%, 7.87%, and 9.52% at the AF of 4, 5,
and 6 for all test data, respectively. In comparison with
the highest Dice score of the Reconstruction-k methods

(Deep-Cascade-k),RS-Net leads to the increase of Dice
score by 3.00%, 2.01%, and 4.17% at AF of 4, 5, and 6
for all test data, respectively.

Figures 7 and 8 display the ventilation defect region
segmentation results from healthy subjects and patients
of all comparison methods at different AFs, respectively.
From Figure 7, it can be found that Single-Seg, Zero
filling-k,CS-k,CasNet-k,KIKI-net-k,and Deep-Cascade-
k fail to restore the small ventilation defect regions of the
healthy subjects (indicated by the blue arrows), while
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388 LUNG MRI RECONSTRUCTION AND SEGMENTATION

F IGURE 7 Representative segmentation results from healthy subjects at different AFs. The green color denotes the ventilated region and
the red color denotes the ventilation defect region.

F IGURE 8 Representative segmentation results from patients at different AFs. The green color denotes the ventilated region and the red
color denotes the ventilation defect region.

RS-Net can predict these regions with high fidelity at
all AFs. Similarly, from Figure 8, we can see that RS-
Net exhibits more satisfactory segmentation results of
patients than the other comparison methods at each AF.
Specifically, the segmentation results of Zero filling-k are
entirely inaccurate.Single-Seg,CS-k and CasNet-k only
obtain the coarse segmentation results, which cannot
predict the fine structures (indicated by the blue arrows),
especially at a high AF of 6.The segmentation results of
KIKI-net-k, and Deep-Cascade-k become finer to some
extent but are still limited. In the segmentation results of
RS-Net, these fine structures are accurately predicted.
Additionally, the segmentation results from the RS-Net
and FS_U-Net trained on fully sampled images are com-
parable qualitatively even at high AFs, which are very
close to the ground truth.

3.4 Comparison of VDP performance

Figure 9 and Supporting Information Figures S-2and S
-3 depict the scatter plots of VDP calculated from the
fully sampled images and various methods for all test
data at AF of 4, 5, and 6, respectively. Pearson corre-
lation coefficients (r values) are calculated to evaluate
the correlation between VDP values obtained from fully
sampled images and various methods, which are listed
in the scatter plots.

It can be observed that the r values of RS-Net are
the highest among all comparison methods at each AF.
In comparison with the Single-Seg, RS-Net leads to the
increase of r values by 2.82%, 6.22%, and 9.16% at AF
of 4, 5, and 6, respectively. Additionally, RS-Net leads to
the increase of r values by 2.18%, 1.89%, and 2.62% at
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LUNG MRI RECONSTRUCTION AND SEGMENTATION 389

F IGURE 9 VDP comparisons of fully sampled images and different methods at an AF of 4. (a) Scatter plots of VDP calculated from
Single-Seg and fully sampled images. (b) Scatter plots of VDP calculated from Zero filling-k and fully sampled images. (c) Scatter plots of VDP
calculated from CS-k and fully sampled images. (d) Scatter plots of VDP calculated from CasNet-k and fully sampled images. (e) Scatter plots
of VDP calculated from KIKI-net-k and fully sampled images. (f) Scatter plots of VDP calculated from Deep-Cascade-k and fully sampled
images. (g) Scatter plots of VDP calculated from RS-Net and fully sampled images. Pearson correlation coefficients (r values) are listed in the
scatter plots.

AF of 4, 5, and 6, respectively, compared with the Deep-
Cascade-k (the highest r values of the Reconstruction-k
methods). Moreover, there are no significant differences
between the VDP values obtained by RS-Net and the
VDP values obtained by fully sampled images (p> 0.05).

3.5 Comparison with uncoupled
models

To investigate the strength of the proposed multi-task
architecture, we compared it with two uncoupled mod-
els that perform reconstruction and segmentation in
a sequential way. In the first model (called CS_U-
Net), reconstructed images are obtained using the CS
method and then reconstructed images are utilized to
train a U-Net for the segmentation of ventilation defects.
Subsequently, segmentation results are employed to
guide the optimization of CS, including weights for total
variation norm and L1 norm, for better reconstruction.
The second model (called Cascade U-Net) adopts a
cascaded U-Net architecture, where the first U-Net is
used for reconstruction and the second U-Net is used
for segmentation on the reconstructed images from the
first U-Net. Cascade_U-Net is trained in an end-to-end
manner.

Table 4 and Figure 10 present the performance
comparison of different multi-task architectures at an
AF of 4. The results show that RS-Net achieves
the best reconstruction and segmentation performance

TABLE 4 Quantitative metrics obtained by different multi-task
architectures at an AF of 4.

Metrics CS_U-Net
Cascade_U-
Net RS-Net

PSNR 22.11 (2.41) 29.38 (2.92) 30.89 (2.72)

SSIM 0.626 (0.098) 0.857 (0.054) 0.875 (0.053)

Dice 0.791 (0.075) 0.879 (0.056) 0.892 (0.050)
aBest results are shown in bold.

both in qualitative visualization and quantitative vali-
dation among all compared models, demonstrating the
superiority of the proposed multi-task architecture.

3.6 Ablation study

To examine the effects of the weight sharing scheme
and feature-selecting blocks in RS-Net, we investi-
gated ablation studies on RS-Net without weight sharing
scheme and RS-Net without feature-selecting blocks.
We summarize the reconstruction and segmentation
results at an AF of 4 in Table 5. It can be seen that
both the reconstruction and segmentation performance
drop dramatically without weight sharing scheme, and
are even inferior to that of the Single-Recon (PSNR of
29.51 and SSIM of 0.849) and Single-Seg (Dice score
of 0.846) models. Moreover, RS-Net has higher PSNR,
SSIM, and Dice score than that of RS-Net without
feature-selecting blocks.
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390 LUNG MRI RECONSTRUCTION AND SEGMENTATION

F IGURE 10 Representative results obtained by different multi-task architectures at an AF of 4.

TABLE 5 Ablation studies on the weight sharing strategy and
feature-selecting block at an AF of 4.

Metrics
Without
weight sharing

Without
feature-selecting
block RS-Net

PSNR 29.35 (3.12) 30.55 (2.86) 30.89 (2.72)

SSIM 0.848 (0.051) 0.869 (0.087) 0.875 (0.053)

Dice 0.839 (0.111) 0.879 (0.057) 0.892 (0.050)
aBest results are shown in bold.

4 DISCUSSION

In this work, we have presented a complementation-
reinforced network for simultaneous reconstruction and
segmentation of HP gas MRI, called RS-Net. RS-Net
employs a dual-branch encoder-decoder architecture
that integrates the two tasks into a unified frame-
work. Weight sharing scheme is applied between the
two encoders to facilitate effective knowledge transfer
between the tasks. The feature-selecting block is intro-
duced to pick the most informative features for each
task, further enhancing the performance of the RS-Net.
Moreover, the use of the lung mask obtained from the
reconstructed image as complementary information in
the segmentation branch contributes to the improved
segmentation results.Experimental results demonstrate
the superiority of the RS-Net in the reconstruction and
segmentation tasks.

A multi-task model can learn different tasks in
sequential or parallel.42 Our results (Table 4 and
Figure 10) show that the proposed parallel model RS-
Net performs better than simple sequential models
(CS_U-Net and Cascade_U-Net). Particularly, CS_U-
Net and Cascade_U-Net cannot predict the ventilation
defects that are lost in the reconstructed images (see

blue arrows in Figure 10). This limitation arises because
they perform reconstruction before segmentation,which
constrains the segmentation network to learn the fea-
tures inherent in the reconstructed images. In contrast,
RS-Net learns the two tasks in parallel, which enables
both tasks to extract relevant features from undersam-
pled data according to their respective needs, thereby
achieving improved results.

Weight sharing and feature selection allow the multi-
task model to leverage the underlying similarities and
differences between the tasks, thereby facilitating per-
formance improvement. This point has been confirmed
by ablation studies. Specifically, the results (Table 5)
indicate that joint optimization of two tasks without
sharing underlying features is inadequate for foster-
ing mutual regularization and synergies between tasks
and even leads to performance degradation due to
the inflexible nature of joint optimization. Moreover, the
efficacy of feature-selecting blocks in the multi-task net-
work has been evident from the observed performance
improvements.

RS-Net outperforms its variant networks for the sin-
gle task (Single-Recon and Single-Seg), indicating the
presence of a synergistic effect between the two tasks
in RS-Net. Compared to Single-Recon, RS-Net is more
robust to high AFs and can recover more details, espe-
cially in low ventilation regions (see Figures 3 and 4).
This is attributed to the fact that RS-Net focuses
more on high-level semantic features of low ventilation
regions under the constraint of segmentation loss,40–42

resulting in better preservation of fine structures of
low ventilation regions. While these structures will be
discarded by Single-Recon because they have little
impact on overall image quality (indicated by red arrows
in Figure 4).19 Moreover, RS-Net yields more precise
segmentation results than Single-Seg (see Table 3,
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LUNG MRI RECONSTRUCTION AND SEGMENTATION 391

F IGURE 11 Visualization of the features extracted by the encoders in different networks at an AF of 4. (a)–(e) show the features
generated by the first to fifth contracting steps of the encoders, respectively.

Figures 7 and 8). Zero-filling images are susceptible
to severe undersampling artifacts, so Single-Seg is
prone to the influence of artifacts.28 As a result, some
features extracted by Single-Seg are not useful for
segmentation and could even result in wrong results,
especially at high AFs (indicated by blue arrows in
Figures 7 and 8). However, RS-Net can alleviate the
influence of undersampling artifacts under the con-
straint of reconstruction task. Figure 11 further confirms
these points. In the first stage of feature extraction,
RS-Net achieves the most effective feature expres-
sion of low ventilation regions.Conversely,Single-Recon
is inadequate in extracting features of these regions,
and features extracted by Single-Seg are still vulner-
able to undersampling artifacts, leading to information
loss.

RS-Net also exhibits superior reconstruction per-
formance compared to state-of -the-art reconstruction
methods, including CS,9 CasNet,17 KIKI-net,36 and
Deep-Cascade,37 as evidenced by higher PSNR and
SSIM (Table 2). This further validates that effectively
capitalizing on complementary information from seg-
mentation and reconstruction tasks can enhance recon-
struction performance. Moreover, RS-Net can restore
sharp lung structures even at a high AF of 6 (Figure 6),
while existing HP gas MRI reconstruction networks can
only achieve satisfactory results at an AF of 4, with
extremely blurred images at higher AFs.17,18 This high-
lights the role of the multi-task learning scheme in
achieving higher AF. Notably, Table S-1 indicates that
for all compared methods, patients exhibit significantly
higher PSNR than healthy subjects (p < 0.01). This is
because patients have larger ventilation defect regions,

leading to more low-valued pixels in their lung region.
PSNR measures image similarity based on absolute
pixel differences.38 For our dataset, due to the lower
pixel values of patients, they have smaller absolute pixel
differences between reconstructed and fully sampled
images compared to healthy subjects, resulting in higher
PSNR values. However, the visual reconstruction qual-
ity between the two groups is consistent (Figures 5, 6,
and S-1). This conclusion is reinforced by the results
of SSIM, which show no significant difference between
the two groups (p > 0.05) because SSIM evaluates the
perceptual similarity of two images based on structural
information rather than absolute pixel differences.39

The results of commonly used reconstruction-based
segmentation methods17 (Figures 7 and 8) confirm that
the performance of segmentation is highly dependent
on the quality of reconstruction. Zero filling images
are too blurry to identify ventilation defect regions, and
higher quality reconstructed images yield more accurate
segmentation results. Moreover, reconstruction-based
segmentation methods are unable to predict regions
that have been lost during the reconstruction process.
In contrast,RS-Net directly obtains segmentation results
from the undersampled k-space data, which can exploit
more original information and learn more segmentation-
driven features. This effectively boosts the accuracy
of segmentation. It should be noted that Table S-1
shows that healthy subjects have significantly lower Dice
scores compared to patients (p < 0.01), mainly due to
the smaller size of ventilation defects in the healthy
subjects.21 However, the qualitative segmentation qual-
ity of both groups is consistent, as shown in Figures 7
and 8.
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392 LUNG MRI RECONSTRUCTION AND SEGMENTATION

We further demonstrated the clinical potential of the
RS-Net by quantifying VDP values obtained from var-
ious segmentation methods. As shown in Figure 9,
Figures S-2 and S-3, it can be found that there are
obvious increases in Pearson correlation coefficients
(r values) of RS-Net, compared with the other meth-
ods. Moreover, the p-values of RS-Net are higher than
0.05. These results mean that VDP values of RS-Net
have better correlations than the comparison meth-
ods and no significant differences with VDP values of
the fully sampled images. This demonstrates that RS-
Net has the potential for real-time assessment of lung
function.

In the present study, we mainly evaluated RS-Net on
the single-coil MRI data undersampled by the Cartesian
trajectory. However, RS-Net is flexible and theoretical,
which is also applicable to the multi-coil and non-
Cartesian undersampled MRI data, such as radial and
spiral sampling patterns. In the future, we will test the
performance of RS-Net on various types of HP gas MRI
data.

5 CONCLUSIONS

In this work, we develop a complementation-reinforced
network (RS-Net) using multi-task learning for fast
and accurate reconstruction and segmentation of pul-
monary gas MRI. In the RS-Net, reconstruction and
segmentation tasks regularize each other by sharing
underlying characteristics, which enhances the gener-
alization capability of the network. Experimental results
demonstrate that RS-Net can create more accurate
reconstruction and segmentation results than state-of -
the-art methods. Compared with single-task models,
RS-Net leads to the increase of PSNR, SSIM by 7.79%
and 5.39%, respectively, at a high AF of 6. In addi-
tion,RS-Net achieves segmentation of ventilation defect
regions directly from the highly undersampled k-space
data, effectively improving the segmentation perfor-
mance at high AFs (Dice score increased by 9.52%).
Furthermore, the VDP values obtained by the RS-Net
agree well with those of the fully sampled images.
Consequently, the proposed method provides a new per-
spective for future research where multi-task learning
can be exploited for real-time and accurate imaging
and segmentation of HP gas MRI, which benefits the
diagnosis and prognosis of lung diseases.
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