Supporting Information

Structural Insights into the Mechanism of High Affinity Binding of

Ochratoxin A by a DNA Aptamer

Guohua Xu¹, Jiajing Zhao^{1, 5}, Hao Yu^{2, 4}, Chen Wang^{1, 4}, Yangyu Huang⁶, Qiang Zhao^{2, 3, 4, *}, Xin Zhou¹, Conggang Li^{1, *} and Maili Liu¹

¹ Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.

² State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China.

³ Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310000, P. R. China.

⁴ University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.

⁵Xi'an Modern Chemistry Research Institute, Xi'an, 710065, P.R. China.

⁶ Shaoyang University, Shaoyang, 422000, P.R. China.

* To whom correspondence should be addressed. Email: conggangli@wipm.ac.cn (Conggang Li) qiangzhao@rcees.ac.cn (Qiang Zhao)

Figure S1. ITC titration curves for the binding of aptamer and OTA. The K_d value closely corresponds to that measured using FP (Fluorescence Polarization).

Figure S2. Heteronuclear multi-bond correlations (HMBC) spectrum of OBA32-OTA complex at natural abundance at 298 K, showing H1 and H8 proton assignments by through-bond correlations between imino and H8 protons via ¹³C5.

Figure S3. Fluorescence polarization titration of OTA with OBA aptamers.

Figure S4. Assignments of OBA33-OTA complex. (A) Imino proton spectra of OBA33-OTA complex. (B) NOESY spectrum (mixing time, 500 ms) of OBA33-OTA complex in D_2O buffer at 308 K, showing the H8/6-H1' sequential connectivities. Intraresidue H8/6-H1' cross-peaks are labeled with residue numbers. Missing connectivities are marked with asterisks. (C) Expanded NOESY spectrum (mixing time, 300 ms) of OBA33-OTA complex in H₂O buffer at 288 K, correlating NOEs between imino protons and amino/base protons. The arrangements of G-tetrads were identified from framed cross-peaks with the residue number of imino protons labeled in the first position and that of H8 protons in the second position.

Figure S5. Fluorescence polarization titration of OTA or OTB with OBA33 aptamers (A). 1D 1 H (B) and 2D NOESY (C) NMR spectra of OBA33 in the presence of OTA (blue) or OTB (red) in phosphate salt solution containing 10 mM Mg²⁺ at 288 K.

Figure S6. Imino regions of ¹H NMR spectra of OBA32 aptamer with the replacement of G by inosole (I) in the presence of OTA.

Figure S7.(A) Imino regions of ¹H NMR spectra of OBA33 aptamer in the presence /absence of OTA in the 10 mM Tris-HCl buffer including different ions (pH 7.5) at 288 K. (B) FP titration of OTA with OBA33 aptamer in 10 mM Tris-HCl buffer including different ions (pH 7.5). (C) CD data of OBA33 aptamer (10 μ M) in the presence or absence of 2 equivalents of OTA in 10 mM Tris-HCl buffer including different ions (pH 7.5). The concentration of ions in FP and CD experiments are the same as that in NMR experiments.

Figure S8. OTA Binding pocket showing that the negatively charged carboxyl and dissociated Ph-OH of OTA are close to negatively charged phosphate group of OBA33 in OBA33-OTA complex.

Figure S9. NMR titration experiment showing the effect of Mg²⁺ on the imino proton region of OBA33 aptamer in the presence of 1 equivalent of OTA. NMR spectra were acquired in 10 mM Tris-HCl (pH 7.5) buffer containing 120 mM NaCl at 288 K.

Figure S10. The structural comparison of OBA33-OTA (PDB code: 7W9N) and OBA3-OTA (PDB code: 6J2W) complexes. (A) Overall structures. (B) The structures of binding pockets. (C) The surface of binding pockets. (D) Halogen bonds.

Name	Sequence	<i>K</i> _d (nM)
OBA32	GATCGGGTGTGGGTGGCGTAAAGGGAGCATCG	67±3
OBA36	GATCGGGTGTGGGTGGCGTAAAGGGAGCATCG <mark>GACA</mark>	58±2
OBA33	CGATCGGGTGTGGGTGGCGTAAAGGGAGCATCG	54±2
OBA33-C3	CGCTCGGGTGTGGGTGGCGTAAAGGGAGCAGCG	61±2
OBA35	GCGCTCGGGTGTGGGTGGCGTAAAGGGAGCAGCGC	35±4
OBA33-29-5mC	CGATCGGGTGTGGGTGGCGTAAAGGGAG(5mC)ATCG	472±17
OBA33-27-AP	CGATCGGGTGTGGGTGGCGTAAAGGG(AP)GCATCG	1053±48
OBA33-C3G4	CGCGCGGGTGTGGGGTGGCGTAAAGGGAGCCGCG	1736±63
OBA31	GATCGGGTGTGGGTGGCGTAAAGGGAGCATC	141±7
OBA29	ATCGGGTGTGGGTGGCGTAAAGGGAGCAT	11300±600

 Table S1. Sequence and dissociation constant of aptamers.

Binding buffer containing 10 mM Tris-HCl (pH 7.5), 10 mM MgCl₂, 120 mM NaCl, 5 mM KCl, and 0.1%

Tween 20

Residue	H1/H3	H41/H21	H42/H22	H5/Me	H1'	Н2'	Н2"	Н3'	H4'	Н5'	Н5"	H8/H6
		/H61	/H62	/H2								
C1		8.19	7.04	5.91	5.77	1.87	2.37	4.7	4.07	3.72	3.72	7.62
G2	12.96				5.49	2.70	2.72	4.99	4.31	3.97	4.08	7.93
A3		7.89	6.08	8.03	6.23	2.54	2.82	4.99	4.43	4.21	4.17	8.20
T4	13.62			1.10	5.81	2.27	1.63	4.89	4.16	4.22	4.23	7.17
C5		5.41	7.08	5.51	5.69	1.04	2.39	4.56	3.16	3.84	3.90	7.30
G6	10.40	9.92	6.43		5.75	2.84	3.13	4.97	4.33	3.88	3.66	7.57
G7	11.29	8.91	6.53		5.88	2.89	2.64	4.88	4.40			7.32
G8	11.59	9.98	6.19		5.10	2.48	2.76	4.99	4.26	4.16		7.79
Т9				2.03	6.51	2.56	2.70	5.01	4.61	4.32	4.43	7.84
G10	12.93				6.24	2.94	2.65	4.78	4.53	4.20	4.35	8.00
T11	13.36			1.15	6.39	2.29	2.48	4.7	3.07	4.10	4.10	7.47
G12	12.1	9.37			6.08	3.38	2.92	5.07	4.94	4.54	4.17	7.44
G13	12.01	9.92	6.72		6.36	2.91	2.49	5.29	4.43	4.35	4.38	7.99
G14	11.79				6.40	2.49	2.90	5.20	4.45	4.40	4.51	8.43
T15	11.45			0.44	6.07	2.18	2.75	5.01	4.50	3.67	3.67	7.58
G16	12.12				5.77	3.52	2.95	4.94	4.34	3.67	3.96	7.28
G17	12.14				5.93	2.59	2.90	5.16	4.48	4.35	4.35	8.09
C18		8.30	7.08	5.22	6.04	0.81	1.82	4.46	4.23	4.12	3.93	6.87
G19					5.64	3.00	2.65	5.06	4.57	3.93	4.12	8.10
T20				1.86	6.09	1.97	2.01	4.39	4.03	3.92	3.95	7.58
A21				7.83	5.98	2.12	2.35	4.56	3.26	3.58	2.97	8.02
A22				7.58	5.93	2.67	2.48	4.77	4.20	3.83	3.84	7.78
A23				7.52	5.95	2.56	2.98	5.07	4.36	4.19	4.19	7.94
G24	12.29				5.46	2.28	2.57	4.87	4.23	4.06	4.11	7.33
G25	11.03	8.62	6.57		5.72	2.73	2.35	4.86	4.25	4.05	4.05	7.16
G26	10.86	10.02	6.04			2.34	2.72	4.85	4.29	4.05	4.05	8.20
A27				7.25	5.99	2.54	2.61	5.18	4.37	4.13	3.92	7.79
G28	8.89				4.54	0.93	2.55	4.68		3.81		5.74
C29				6.43	6.61	2.01	2.15	4.24	4.33	3.81	3.96	6.87
A30		7.36	5.74	8.00	6.41	3.00	3.21	5.15	4.66	3.80	4.22	8.64
T31	13.24			1.39	6.15	2.18	2.56	4.97	4.44	4.34	4.19	7.29
C32		8.63	7.07	5.76	5.88	2.07	2.43	4.91	4.19	4.35	4.35	7.55
G33					6.19	2.66	2.43	4.72	4.21	4.12	4.14	7.99

Table S2. Proton chemical shift of OBA33-OTA complex. The chemical shift values for carbon hydrogens and active hydrogens are from NMR spectra acquired in D_2O buffer at 308 K and from NMR spectra acquired in H_2O buffer at 288 K, respectively.

Intraresidue 112 Intraresidue 142 Sequencial 142 Long-range 65 Intermolecular 41 OPA Hydrogen bond restraints 90 Sugar pucker restraints 60 Dihedral angles 100 Repulsive 2 Number (>0.2 Å) 3 RMSD of vilations (Å) 0.043 ± 0.002 Max. distance constraint violation (Å) 0.262 UEVitations Bond lengths (Å) 0.002 ± 0.000 Bond angles (deg) 0.480 ± 0.019 Impropers (deg) 0.307 ± 0.007 Entire complex 0.57 ± 0.14	Tuble Se. Statistics of the compared ten structur			
Intraresidue 112 Sequencial 142 Long-range 65 Intermolecular 41 Hydrogen bond restraints Hydrogen bond restraints 90 Sugar pucker restraints 60 Dihedral angles 100 Repulsive 2 Number (>0.2 Å) 3 RMSD of vilations (Å) 0.043 ± 0.002 Max. distance constraint violation (Å) 0.262 Deviations from the ideal covalent geometry 1 Bond lengths (Å) 0.4002 ± 0.000 Bond angles (deg) 0.480 ± 0.019 Impropers (deg) 0.307 ± 0.007 Entire complex 0.57 ± 0.14	Distance restraints			
Sequencial142Long-range65Intermolecular41OFFERENTIALSHydrogen bond restraints90Sugar pucker restraints60Dihedral angles100Dihedral angles2Number (>0.2 Å)3RMSD of vilations (Å)0.043 ± 0.002Max. distance constraint violation (Å)0.043 ± 0.002Deviations from the ideal covalent geometry90Bond lengths (Å)0.002 ± 0.000Bond angles (deg)0.307 ± 0.007Impropers (deg)0.307 ± 0.007Entire complex0.57 ± 0.14	Intraresidue	112		
Long-range 65 Intermolecular 41 Intermolecular POLO POLO Hydrogen bond restraints 90 Sugar pucker restraints 60 Dihedral angles 100 Repulsive 2 Number (>0.2 Å) 3 RMSD of vilations (Å) 0.043 ± 0.002 Max. distance constraint violation (Å) 0.262 Bond lengths (Å) 0.002 ± 0.000 Bond lengths (Å) 0.480 ± 0.019 Impropers (deg) 0.307 ± 0.007 Impropers (deg) 0.307 ± 0.007 Entire complex 0.57 ± 0.14	Sequencial	142		
Intermolecular 41 Hydrogen bond restraints 90 Sugar pucker restraints 60 Dihedral angles 100 Repulsive 2 Number (>0.2 Å) 3 RMSD of vilations (Å) 0.043 ± 0.002 Max. distance constraint violation (Å) 0.262 Bond lengths (Å) 0.002 ± 0.000 Bond lengths (Å) 0.480 ± 0.019 Impropers (deg) 0.307 ± 0.007 Entire complex 0.57 ± 0.14	Long-range	65		
Hydrogen bond restraints 90 Sugar pucker restraints 60 Dihedral angles 100 Repulsive 2 Number (>0.2 Å) 3 RMSD of vilations (Å) 0.043 ± 0.002 Max. distance constraint violation (Å) 0.262 Bond lengths (Å) 0.002 ± 0.000 Bond angles (deg) 0.480 ± 0.019 Impropers (deg) 0.307 ± 0.007 Entire complex 0.57 ± 0.14	Intermolecular	41		
Hydrogen bond restraints 90 Sugar pucker restraints 60 Dihedral angles 100 Repulsive 2 Number (>0.2 Å) 3 MSD of vilations (Å) 0.043 ± 0.002 Max. distance constraint violation (Å) 0.262 Bond lengths (Å) 0.002 ± 0.000 Bond lengths (Å) 0.307 ± 0.019 Impropers (deg) 0.307 ± 0.007 Entire complex 0.57 ± 0.14	Other restraints			
Sugar pucker restraints 60 Dihedral angles 100 Repulsive 2 NOF violations 3 Number (>0.2 Å) 3 RMSD of vilations (Å) 0.043 ± 0.002 Max. distance constraint violation (Å) 0.262 Deviations from the ideal covalent geometry 0.002 ± 0.000 Bond lengths (Å) 0.002 ± 0.000 Bond angles (deg) 0.480 ± 0.019 Impropers (deg) 0.307 ± 0.007 Entire complex 0.57 ± 0.14	Hydrogen bond restraints	90		
Dihedral angles 100 Repulsive 2 NUBE 2 Number (>0.2 Å) 3 RMSD of vilations (Å) 0.043 ± 0.002 Max. distance constraint violation (Å) 0.262 Deviations from the ideal covalent geometry 0.002 ± 0.000 Bond lengths (Å) 0.002 ± 0.000 Bond angles (deg) 0.480 ± 0.019 Impropers (deg) 0.307 ± 0.007 Entire complex 0.57 ± 0.14	Sugar pucker restraints	60		
Repulsive 2 NOF violations 3 Number (>0.2 Å) 3 RMSD of vilations (Å) 0.043 ± 0.002 Max. distance constraint violation (Å) 0.262 Deviations from the ideal covalent geometry 0.002 ± 0.000 Bond lengths (Å) 0.002 ± 0.000 Bond angles (deg) 0.480 ± 0.019 Impropers (deg) 0.307 ± 0.007 Pairwise all heavy atoms RMSD values (Å) 0.57 ± 0.14	Dihedral angles	100		
NUBE violations 3 Number (>0.2 Å) 3 RMSD of vilations (Å) 0.043 ± 0.002 Max. distance constraint violation (Å) 0.262 Deviations from the ideal covalent geometry 0.002 ± 0.000 Bond lengths (Å) 0.002 ± 0.000 Bond angles (deg) 0.480 ± 0.019 Impropers (deg) 0.307 ± 0.007 Entire complex 0.57 ± 0.14	Repulsive	2		
Number (>0.2 Å) 3 RMSD of vilations (Å) 0.043 ± 0.002 Max. distance constraint violation (Å) 0.262 Deviations from the ideal covalent geometry 0.002 ± 0.000 Bond lengths (Å) 0.002 ± 0.000 Bond angles (deg) 0.480 ± 0.019 Impropers (deg) 0.307 ± 0.007 Pairwise all heavy atoms RMSD values (Å) U	NOE violations			
RMSD of vilations (Å) 0.043 ± 0.002 Max. distance constraint violation (Å) 0.262 Deviations from the ideal covalent geometry 0.002 ± 0.000 Bond lengths (Å) 0.002 ± 0.000 Bond angles (deg) 0.480 ± 0.019 Impropers (deg) 0.307 ± 0.007 Pairwise all heavy atoms RMSD values (Å) 0.57 ± 0.14	Number (>0.2 Å)	3		
Max. distance constraint violation (Å)0.262Deviations from the ideal covalent geometryBond lengths (Å)0.002 ± 0.000Bond angles (deg)0.480 ± 0.019Impropers (deg)0.307 ± 0.007Pairwise all heavy atoms RMSD values (Å)Entire complex0.57 ± 0.14	RMSD of vilations (Å)	0.043 ± 0.002		
Deviations from the ideal covalent geometry 0.002 ± 0.000 Bond lengths (Å) 0.002 ± 0.000 Bond angles (deg) 0.480 ± 0.019 Impropers (deg) 0.307 ± 0.007 Pairwise all heavy atoms RMSD values (Å) 0.57 ± 0.14	Max. distance constraint violation (Å)	0.262		
Bond lengths (Å) 0.002 ± 0.000 Bond angles (deg) 0.480 ± 0.019 Impropers (deg) 0.307 ± 0.007 Pairwise all heavy atoms RMSD values (Å) 0.57 ± 0.14	Deviations from the ideal covalent geometry			
Bond angles (deg) 0.480 ± 0.019 Impropers (deg) 0.307 ± 0.007 Pairwise all heavy atoms RMSD values (Å) Entire complex 0.57 ± 0.14	Bond lengths (Å)	0.002 ± 0.000		
Impropers (deg) 0.307 ± 0.007 Pairwise all heavy atoms RMSD values (Å) 0.57 ± 0.14	Bond angles (deg)	0.480 ± 0.019		
Pairwise all heavy atoms RMSD values (Å) Entire complex 0.57 ± 0.14	Impropers (deg)	0.307 ± 0.007		
Entire complex 0.57 ± 0.14	Pairwise all heavy atoms RMSD values (Å)			
	Entire complex	0.57 ± 0.14		

Table S3. Statistics of the computed ten structures of OBA33-OTA complex

OTA protons	OBA33 aptamer protons	
Н4	T4-H3	
	G28-H1	
	А30-Н2	
Н9	Т4-Ме, Н6	18 16 0H
H14	G28-H8	$19 \begin{array}{c ccccccccccccccccccccccccccccccccccc$
H12	G28-H2'/2'', H8	Cl
	С29-Н6, Н5, Н2'/2'', Н3'	
	C5-H41	OTA structure
1121	Т15-Н1', Н4'	
H21	A30-H1', H4', H8, H2	
	Т4-Н3	
	G28-H1	
H16/20	G28-H2'/2'', H3', H8	
H17/19	G28-H2'/2'', H3', H8	
	A27- H2'/2'', H3'	
H18	G28-H2'/2'', H3', H8	
	A27- H2'/2'', H3'	

Table S4. Intermolecular NOEs between OTA and OBA33 aptamer protons in OBA33-OTA complex.

OTB protons	OBA33 aptamer protons	
	T4-H3	
H4	G28-H1	
	А30-Н2	17 0 ОН
Н9	Т4-Ме, Н6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
H10	T4-Me	20 14 H $9 10 5 3$
H12	G28-H2'/2'', H8	H
		OTB structure
	C29-H6, H5, H2 ⁷ /2 ⁷⁷ , H3 ⁷	
	C5-H41	
H21	Т15-Н1', Н4'	
	A30-H1', H4', H8, H2	
	Т4-Н3	
	G28-H1	
H16/20	G28-H2'/2'', H3', H8	
H17/19	G28-H2'/2'', H3', H8	
	Δ27- H2 ['] /2 ^{''} H3 [']	
	, 112,2 ,112	
H18	G28-H2'/2'', H3', H8	
	A27- H2'/2'', H3'	

 Table S5. Intermolecular NOEs between OTB and OBA33 aptamer protons in OBA33-OTB complex.

Name	Sequence $(5' \rightarrow 3')$
OBA32	GATCGGGTGTGGGTGGCGTAAAGGGAGCATCG
OBA32-I2	IATCGGGTGTGGGTGGCGTAAAGGGAGCATCG
OBA32-I6	GATCIGGTGTGGGTGGCGTAAAGGGAGCATCG
OBA32-I8	GATCGGI TGTGGGTGGCGTAAAGGGAGCATCG
OBA32-I10	GATCGGGTI TGGGTGGCGTAAAGGGAGCATCG
OBA32-I12	GATCGGGTGTI GGTGGCGTAAAGGGAGCATCG
OBA32-I16	GATCGGGTGTGGGTIGCGTAAAGGGAGCATCG
OBA32-I17	GATCGGGTGTGGGGTGICGTAAAGGGAGCATCG
OBA32-I24	GATCGGGTGTGGGTGGCGTAAAI GGAGCATCG
OBA32-I26	GATCGGGTGTGGGGTGGCGTAAAGGI AGCATCG
OBA32-I28	GATCGGGTGTGGGTGGCGTAAAGGGAI CATCG

 Table S6. OBA32 aptamer and its inosine-substituted variants sequences.